日本語

Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

208
2024-06-21 14:43:06
翻訳を見る

In the interaction between ultra short and ultra strong lasers and matter, short pulse width and high energy electrons are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite ultrafast electromagnetic radiation in a wide range of wavelengths (microwave gamma rays), drive ion acceleration, and rapidly heat substances, serving as energy carriers in the "fast fire" process of inertial confinement fusion. The properties of various secondary radiation and particle sources, plasma heating and energy deposition processes are closely related to the temporal, spatial, and energy characteristics, as well as the evolution dynamics of hot electrons. After years of research, people have gained a clear understanding of the energy and spatial characteristics of superheat electrons. However, due to the lack of suitable high-resolution measurement methods, the diagnosis of the time structure and dynamic processes of superheat electron beams still faces challenges.

A research team composed of Liao Guoqian, a specially appointed researcher, Li Yutong, and Zhang Jie from the Institute of Physics of the Chinese Academy of Sciences/Key Laboratory of Photophysics of the National Research Center for Condensed Matter Physics in Beijing, and other academicians, has explored for many years a new way for ultraintense lasers to interact with solid targets to generate high-power terahertz radiation, proposed a terahertz generation model based on coherent transition radiation of ultrahot electron beams, and developed a single shot ultra wideband terahertz detection technology based on non collinear autocorrelation.

On this basis, the team recently proposed a new method for diagnosing superheat electron beams using terahertz radiation. Using a self-developed high time resolution single shot terahertz autocorrelator, in-situ and real-time measurements of the time-domain structure and dynamics of superheat electron beams during the interaction between ultra strong lasers and thin film targets were achieved. In theory, a mapping relationship between terahertz radiation properties and the spatiotemporal characteristics of superheat electron beams was constructed, and the quantitative relationship between terahertz pulse width and electron beam pulse width, beam spot size, emission angle and other parameters was provided.

On the one hand, the pulse width of the ultra hot electron beam in the laser solid target interaction was accurately characterized at the order of tens of femtoseconds. It was found that the electron beam accelerated by the ultra strong laser had a pulse width similar to that of the driving laser during generation. Subsequently, during transmission, the longitudinal time width and transverse spatial size gradually widened due to velocity dispersion and angular divergence; On the other hand, for the first time, the dynamics of superheat electron backflow caused by secondary acceleration of laser pulses and target surface sheath field were directly observed. It was found that when a high contrast laser interacts with a thin film target, the electron beam bounces back and forth between the front and back surface sheath fields of the target, with a duration of up to 100 femtoseconds. These results demonstrate a single shot, non-destructive, in situ, and high temporal resolution method for characterizing hot electrons, which is of great significance for understanding and optimizing the spatiotemporal characteristics of ultrafast radiation and particle sources based on hot electrons, and developing related applications.

The relevant results were recently published in the Physical Review Letters under the title "Femtosecond dynamics of fast electron pulses in correlated laser foil interactions". This research work has received support from the National Natural Science Foundation of China, the Ministry of Science and Technology, and the Chinese Academy of Sciences.

Figure 1. Diagnosis of the pulse width of a superheat electron beam using terahertz coherent transition radiation.

Figure 2. Diagnosis of the dynamics of hot electron reflux based on multi cycle terahertz pulses.

Source: Institute of Physics, Chinese Academy of Sciences

関連のおすすめ
  • Scientists uncover the HPC potential of advances in communications and global laser light sources

    Thanks to the advent of high performance computing (HPC) for global laser light sources, the optical communications world is on the verge of major change. This revolutionary technology will redefine the way we transmit and receive data, bringing unprecedented speed and efficiency.Optical communication, which uses light to transmit information, has been a cornerstone of our digital world for deca...

    2023-08-04
    翻訳を見る
  • Optimizing the phase focusing of laser accelerators

    With the help of on-chip accelerator technology, researchers at Stanford University are getting closer to manufacturing a miniature electron accelerator that can have various applications in industrial, medical, and physical research.Scientists have proven that silicon dielectric laser accelerators can now be used to accelerate and limit electrons, thereby producing concentrated high-energy electr...

    2024-02-29
    翻訳を見る
  • Huashu High tech launches a large format 12 laser metal 3D printer at TCT Asia

    Chinese industrial 3D printer manufacturer Huashu High tech has launched the FS811M metal powder bed fusion series platform. The FS811M series has a construction volume of 840 x 840 x 960 millimeters and can be equipped with powerful 6, 8, 10, or 12 x 500 watt fiber lasers."As the latest member of the Huashu High tech Metal 3D printer product portfolio, FS811M originates from our joint innovation ...

    2024-05-13
    翻訳を見る
  • Wuhan Semiconductor Laser Equipment Industry Innovation Joint Laboratory Achieves New Breakthrough

    On February 7th, at the Wuhan Semiconductor Laser Equipment Industry Innovation Joint Laboratory located in the HGTECH Technology Intelligent Manufacturing Future Industrial Park, Huang Wei, the technical director of the laboratory and the director of HGTECH Technology's semiconductor product line, gestured with his hands to introduce the principle of "glass through-hole technology" to Changjiang ...

    02-18
    翻訳を見る
  • 国内自主研发首套碳化硅晶锭激光剥离设备投产

           近日,从江苏通用半导体有限公司传来消息,由该公司自主研发的国内首套的8英寸碳化硅晶锭激光全自动剥离设备正式交付碳化硅衬底生产领域头部企业广州南砂晶圆半导体技术有限公司,并投入生产。 图:8英寸SiC晶锭激光全自动剥离设备       该设备可实现6英寸和8英寸碳化硅晶锭的全自动分片,包含晶锭上料、晶锭研磨、激光切割、晶片分离和晶片收集,一举填补了国内碳化硅晶锭激光剥离设备领域研发、制造的市场空白,突破了国外的技术封锁,将极大地提升我国碳化硅芯片产业的自主化、产业化水平。       该设备年可剥离碳化硅衬底20000片,实现良率95%以上,与传统的线切割工艺相比,大幅降低了产品损耗,而设备售价仅仅是国外同类产品的1/3。       近年来,碳化硅功率器件在大功率半导体市场中所占的份额不断提高,并被广泛应用于新能源汽车、城市轨道交通、风力发电、高速移动、物联网等一系列领域...

    2024-08-26
    翻訳を見る