日本語

Lumiotive Launches New LiDAR Sensor LM10

966
2023-09-02 13:53:34
翻訳を見る

Recently, optical semiconductor developer Lumiotive, headquartered in Seattle, USA, launched a new LiDAR sensor LM10, which is its first fully produced product of light controlled metasurface (LCM) technology designed for digital beam steering.

The developers stated that compared to mechanical systems, their digital beam steering method overcomes the limitations of traditional LiDAR sensors in terms of cost, size, and reliability. As a solid-state optical semiconductor that can be mass-produced, LCM enables LiDAR to expand into new application fields.

Lumiotive also provides a reference design for M30, a production ready LiDAR sensor based on LM10 that sensor manufacturers can integrate into their LCM driver products.

Dr. Gleb Akselrod, founder and Chief Technology Officer of Lumiotive, commented, "After eight years of research and development, we are pleased to bring our first solid-state beam steering product to the market." LCM technology utilizes revolutionary dynamic metasurface physics principles to actively guide light without any moving components, achieving unprecedented capabilities in 3D sensing and many other software controlled beam shaping applications.

Dr. Sam Heidari, CEO of Lumiotive, added, "With LM10, we are entering a new era of programmable optics. By combining the transformative power of metamaterials with our patented semiconductor manufacturing processes, we are achieving low-cost mass production and making 3D sensing defined by software popular.

Lumotive's partner and customer network, as well as leading industry analysts, shared their comments on the potential impact of the LM10 launch on their market and the future of all 3D sensing LCMs.

Pierre Boulay, senior technical and market analyst at Yole Intelligence, a subsidiary of the Yole Group, stated: "Solid state beam steering technology is the future of 3D sensing. Whether it is guiding autonomous vehicle, providing advanced robotics for manufacturing, or enhancing the interactivity and functions of consumer electronics, LuMotive's LM10 is part of this wave of change, providing the precise progress needed to unlock new levels of efficiency, safety and innovation."

Matt Everett, Senior Director of Lumentum Product Line Management, stated: The dynamic metasurface technology used in LM10 can expand the range of laser components in LiDAR systems and improve energy utilization. The integration between Lumotive and Lumentum enables true solid-state VCSEL LiDAR to have compact software defined features while providing unparalleled flexibility and performance. LM10 enables enterprises to achieve the vision that LiDAR can achieve, completely changing the industry, and opening up new horizons for innovation.

James Suh, CEO of Namuga, said, "The LM10 LiDAR sensor and its digital beam steering capability enable us to integrate the unique advantages of scanning LiDAR systems into the same embeddable form factor as other 3D sensing cameras.

Axibo CEO Anoop Gadhrri said, "With its advanced scanning function and dynamic region of interest adjustment, the LM10 chip has completely changed the theme tracking and autofocus of photo and video camera systems." This innovative solution not only improves the quality and accuracy of our movie automation, but also provides unprecedented creative possibilities for cinematographers, VR/AR developers, and visual storytellers.

Wim Wuyts, Chief Business Officer of Gpixel, stated: As a partner of Lumiotive, we are deeply impressed by the excellent ability of the LM10 LiDAR sensor to expand the range of flight time sensors such as GTOF0503 without sacrificing external dimensions or reliability. By overcoming the limitations of pure flash lighting, the LM10 LiDAR sensor opens up new possibilities for advanced imaging, and we are particularly optimistic about its excellent performance enhancement for robot navigation in logistics environments.

Source: OFweek

関連のおすすめ
  • Researchers Obtaining Scientific Returns from Raman Spectroscopy for External Bioexploration Using Lasers

    We investigated the potential of laser selection in a wide optical range from ultraviolet to visible light, and then to infrared (excitation wavelengths of 325, 532, 785, and 1064 nm), in order to combine and analyze extreme microorganisms related to Earth (such as Cryptomeria elegans, cold floating nematodes, and circular green algae), carbon water compound molecules, as well as simulated mineral...

    2023-10-23
    翻訳を見る
  • Creativity Falcon 2 laser cutting machine will be launched in Germany equipped with a new 60W laser head

    Starting from June 20th, The Creativity Falcon 2 laser cutting machine will also be launched in Germany, equipped with a new 60W laser head. With this ability, fully encapsulated equipment can now also be carved into steel. High power is achieved through twelve 5-watt laser diodes, whose beams are combined with each other. This will make it possible to cut 22mm thick lime wood and 30mm thick or...

    2024-05-29
    翻訳を見る
  • Researchers use desktop laser systems to generate ultrafast electrons

    In a mass particle accelerator, subatomic particles are accelerated to ultrahigh speeds that are comparable to the speed of light towards the target surface. The accelerated collision of subatomic particles produces unique interactions, enabling scientists to gain a deeper understanding of the fundamental properties of matter.Traditionally, laser based particle accelerators require expensive laser...

    2024-03-14
    翻訳を見る
  • Veeco Instruments wins IBM big order

    On August 14th local time, Veeco Instruments, a well-known American laser annealing manufacturer, announced an important cooperation with technology giant IBM. It is reported that IBM has selected Veeco Instruments' WaferStorm wet processing system as support for its advanced packaging applications, and the two parties have signed a joint development agreement to explore the potential of utilizi...

    2024-08-23
    翻訳を見る
  • Two photon absorption quantum mechanism breaks through the resolution and efficiency limits of optical nanoprinting

    Recently, a research team from the School of Physics and Optoelectronic Engineering at Jinan University has elucidated for the first time the time-dependent quantum mechanism of two-photon absorption and proposed a two-photon absorption (fpTPA) optical nanoprinting technology based on few photon irradiation, successfully breaking through the bottleneck of traditional two-photon printing technology...

    03-06
    翻訳を見る