日本語

Based on Transform Optics: Realizing an Ideal Omnidirectional Invisible Cloak in Free Space

741
2024-04-29 16:03:41
翻訳を見る

A team led by Professor Ye Dexin and Professor Chen Hongsheng from Zhejiang University, as well as Professor Yu Luo from Nanyang University of Technology, conducted practical research on full parameter transformation optical devices. The research team has designed and implemented an all parameter omnidirectional invisibility cloak based on the theory of linear transformation optics and omnidirectional matching transparent metamaterials, which can hide large objects in free space.

The research findings were published in the National Science Review under the title of "Omnidirectional Transformation Optical Devices with All Parameters". Dr. Yuan Gao from Zhejiang University was the first author, and Professor Yu Luo, Professor Chen Hongsheng, and Professor Ye Dexin were the corresponding authors.

In 2006, Professor Pendry from Imperial College London, UK, proposed transformation optics, which describes the correspondence between electromagnetic wave propagation paths and material composition parameters, providing a universal and powerful method for controlling electromagnetic waves.

In the past decade, transformation optics has developed rapidly, and various new optical devices have been designed through transformation optics, such as invisibility cloaks, electromagnetic illusion devices, and concentrators. However, the composition parameters of optical media transformation are anisotropic and often uneven or have singular values, making it difficult to achieve.

For example, the omnidirectional invisibility cloak achieved through experiments so far has always simplified the material parameters. Simplified design sacrifices impedance matching, thereby reducing the performance of transformation optical devices.

To address these issues, the research team designed a two-dimensional all parameter omnidirectional planar invisibility cloak based on linear transformation optics, which is composed of only two homogeneous materials. The composition parameters of the first material are anisotropic, with both zero and extreme values, and electromagnetic waves propagating along the optical direction have infinite phase velocities.

Design an ideal omnidirectional cloak in free space. (a) Stealth design based on linear transformation optical elements. (b) A schematic diagram of the actual cloak. (c) Simulate (I, II, III) and measure (IV, V, VI) stealth performance.

By using this material, electromagnetic waves can bypass the invisible region, achieving omnidirectional impedance matching and zero phase delay. The second material also has anisotropic composition parameters, which can achieve phase compensation under omnidirectional impedance matching, and electromagnetic waves propagating in the optical direction have sub cavity phase velocity.

In the experimental verification, researchers used these two materials with TM polarization wave full parameter composition parameters.
The first material is achieved using a subwavelength metal patch array with Fabry Perot resonance, while the second material is achieved using a structure composed of traditional I-type electric resonators and split ring resonators.

Finally, the researchers measured the magnetic field around the omnidirectional cloak composed of the first two materials under different angles of TM polarization wave incidence, and the results showed that it has excellent stealth performance.

This study presents for the first time a fully parametric omnidirectional invisibility cloak in free space, which can hide large objects under any incident light. The achieved invisibility cloak can be immediately used to suppress the scattering cross-section of targets in radar communication and bistable detection.

The method proposed in this study also has a profound impact on the practical application of other full parameter transformation optical devices.

Source: Physicist Organization Network

関連のおすすめ
  • The LiDAR SLAM navigation system uses laser sensors to realize real-time 3D mapping of the environment

    Robotic lawn mowers are becoming increasingly popular due to their convenience and ability to save time and effort. Although robotic lawnmowers have made significant progress over the years, many robots still require users to lay perimeter wires to define the mowing area and remove any obstructions from the lawn to ensure the mower doesn't get stuck or damaged.Well, that's not the case with the Ne...

    2023-09-11
    翻訳を見る
  • The Science Island team has made new progress in detecting atmospheric formaldehyde

    Recently, Zhang Weijun, a research team of the Anguang Institute of the Chinese Academy of Sciences, Hefei Academy of Materials, made new progress in atmospheric formaldehyde detection, and the related achievements were published on the international TOP journal Sensors and Actors: B. Chemical under the title of "Portable highly sensitive laser absorption spectrum formaldehyde sensor based on comp...

    2023-09-21
    翻訳を見る
  • The new Casiris H6 4K UST tricolor laser projector is about to be launched through Indiegogo

    Casir is about to launch the H6 4K UST tricolor laser projector through Indiegogo. The new laser projector has a brightness of up to 3000 ANSI lumens and a BT.2020 color gamut coverage of 110%. It is an ultra short focus projector that runs on Android TV.The Casiris H6 4K UST tricolor laser projector is a brighter and more accurate version of the Casiris A6. It also has greater image projection ca...

    2023-09-18
    翻訳を見る
  • Hanbit Laser Layout in Southeast Asia's Mid to Low End Market

    Hanbit Laser, a South Korean laser equipment manufacturer, has recently completed an important step in its strategic layout for the Southeast Asian market. Recently, the company officially opened a laser application center in Hanoi, Vietnam, and entered the local mid to low price equipment market by integrating laser technology and automation solutions. This is a substantial progress in implementi...

    02-26
    翻訳を見る
  • Micro optical technology based on metasurfaces has become a hot topic

    Introduction and application of a micro optical platform using metasurfacesMetasurfaces are artificial materials that excel in manipulating perception. Due to the fact that metasurfaces can reduce the size of lenses to one thousandth of traditional lenses, they have attracted great attention as optical components for miniaturization of next-generation virtual reality, augmented reality, and LiDAR ...

    2024-02-02
    翻訳を見る