日本語

MIT research enables 3D printers to recognize new materials

481
2024-04-18 16:54:09
翻訳を見る

According to scientists at MIT, mathematical formulas developed by MIT researchers and other institutions can significantly improve the sustainability of 3D printing.

Issues with 3D printing of plastics
3D printers typically use mass-produced polymer powders to print parts, which are consistent and predictable, but also difficult to recycle.
Other more environmentally friendly options also exist and are still under development, but changing the printing material also requires adjusting the parameters of the 3D printer, which is a challenging process that requires changing up to 100 features, and most of them are done manually.

"Mathematical functions" for new parameters
A research team from the MIT Bits and Atoms Center, the National Institute of Standards and Technology, and the National Center for Scientific Research in Greece has developed a process that actually allows printing software to quickly identify the characteristics of new printing materials. It may have never been encountered before and many related parameters have been adjusted accordingly.

Researchers have improved the extruder of a 3D printer to measure material flow and force within 20 minutes, and then input these numbers into its "mathematical function" to generate new parameters that can be implemented in standard printing software.

The Success of Biobased Materials
Officials from the Massachusetts Institute of Technology say that this technology accounts for about half of the parameters that typically require human modification. Experiments on new materials (including materials from biological sources) have shown that this process can even successfully manufacture complex parts.

Reduce the impact of 3D printing on the environment
This method can achieve more recyclable printed products and limit the use of polymers from fossil fuels, ultimately reducing the overall environmental impact of additive manufacturing.

Source: Laser Net

関連のおすすめ
  • IPG introduces a new dual-beam laser with the highest single-mode core power

    From September 12 to 14, 2023, IPG Photonics, a well-known fiber laser technology leader in the United States, will showcase its latest innovative laser solutions at the Battery Show in Michigan, USA. IPG will also showcase industry-leading fiber laser sources and automated laser systems for electric vehicle battery welding applications.New laser technology pushes the limits of battery welding spe...

    2023-09-14
    翻訳を見る
  • Dark Solitons Discovered in Ring Semiconductor Lasers

    Dark solitons - the extinction region in a bright background - spontaneously form in a ring semiconductor laser. Observations conducted by an international research group may lead to improvements in molecular spectroscopy and integrated optoelectronics.Frequency comb - a pulse laser that outputs light at equidistant frequencies - is one of the most important achievements in the history of laser ph...

    2024-02-01
    翻訳を見る
  • Dr. Torsten Derr will be appointed as the CEO of SCHOTT Group on January 1, 2025

    November 25, 2024, Mainz, GermanyStarting from January 1, 2025, Dr. Torsten Derr will take over as the CEO of SCHOTT Group.The new CEO of SCHOTT Group previously served as the CEO of SGL Carbon SE.Starting from January 1, 2025, Dr. Torsten Derr will officially assume the position of CEO of SCHOTT Group. SCHOTT Group announced in October 2024 that Dr. Torsten Derr will succeed Dr. Frank Heinrich, w...

    2024-11-27
    翻訳を見る
  • Chinese University of Science and Technology Reveals a New Physical Mechanism of Photoinduced Particle Rotation

    Light has angular momentum properties. Circularly polarized or elliptically polarized beams carry spin angular momentum (SAM), while beams with helical phase wavefronts carry orbital angular momentum (OAM). During the interaction between light and particles, the transfer of angular momentum can generate optical torque, driving particles to rotate. Among them, the transfer of optical spin angular m...

    2024-06-25
    翻訳を見る
  • TRUMPF helps upgrade the automation of 3D laser processing for automotive thermoforming

    (Dechengen, Germany, March 24, 2025) - TRUMPF Group in Germany has now provided end customers with a fully automated one-stop solution for laser processing systems. With this solution, customers can not only shorten the production cycle, but also effectively reduce the cost of 3D laser material processing. Our laser equipment has excellent production efficiency. Now, through the automation upgrade...

    04-02
    翻訳を見る