日本語

Polish and Taiwan, China scientists are committed to new 3D printing dental implants

768
2024-04-17 16:18:53
翻訳を見る

Researchers from Wroclaw University of Technology and Taipei University of Technology in China are developing dental implants made from 3D printed ceramic structures connected to metal cores. Due to the use of biodegradable magnesium, bone tissue will gradually grow into such implants.
 
"The result will be a composite implant that can replace human teeth. Its scaffold is made of aluminum oxide and manufactured using additive methods [3D printing], ensuring that it will be customized according to specific patient needs," the press release stated.

In the upper part (crown), the ceramic structure is solid, and in the lower part (root), the ceramic structure is porous. Therefore, it can be filled with liquid metal - magnesium alloy. This will reduce the fragility of the structure, and the core itself will initially act as an anchor, fixing the implant in the jawbone. Magnesium will gradually degrade, releasing space for bone tissue growth (this process is called bone integration). As a result, the implant will become very stable - embedded in human tissue.

Scientists from Taiwan, China, China, in cooperation with researchers from Wroclaw, have developed appropriate ceramic preforms with openings, that is, they combine with metal cores to form implant structures. These structures were sent to the Department of Light Component Engineering, Casting, and Automation at the School of Mechanical Engineering, Wroclaw University of Technology, where researchers injected metal (a biocompatible magnesium alloy) into them.

The project is still in its early stages
"We are in the early stages of the project, so we are currently testing two casting techniques, and then we will choose the most favorable one. The first is the pressure infiltration method, or more accurately, from liquid pressing, placing the ceramic shape in a pressing chamber and pouring liquid metal, then lowering the piston to press the liquid metal into the pores of the ceramic. Preformed parts," Dr. Anna Dmitruk explained in a press release.

"The second technology is precision casting, which is also used in jewelry production. Here, we first make gypsum molds for wax or plastic models that were previously prepared," she added.

The work of the CERMET program will last for three years. The result will be an implant prototype. After development is completed, scientists can seek funding for subsequent stages of work, including medical pre research.

The project leader is Professor Krzysztof Naplocha from the School of Mechanical Engineering at Wroclaw University of Technology, with team members including Dr. Anna Dmitruk, Dr. Adrianna Filipiak Kaczmarek, and Dr. Natalia Ra ź Ny.

Source: Laser Net

関連のおすすめ
  • BLM Launches Tunable 4kW Five Axis Laser Cutting System

    Recently, the Italian laser pipe processing group BLM Group announced the launch of an LT-Free five axis laser cutting system that can be used for laser cutting and processing of any three-dimensional metal profile, including bending forming, hydraulic forming, extrusion forming, deep drawing forming, flat or stamped forming of pipe fittings or plates.This five axis laser cutting system can provid...

    2023-10-11
    翻訳を見る
  • Progress has been made in the research of phase modulation of terahertz programmable metasurfaces based on free carrier plasmonic dispersion effect

    Recently, the team of Situ Guohai and Guo Jinying from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, and the School of Microelectronics at Shanghai University collaborated to propose a terahertz phase controlled programmable metasurface design scheme based on free carrier plasma dispersion effect. The rela...

    2024-07-26
    翻訳を見る
  • Xi'an Institute of Optics and Fine Mechanics has made progress in the field of integrated microcavity optical frequency comb

    Recently, researcher Zhang Wenfu from the National Key Laboratory of Ultrafast Optical Science and Technology of Xi'an Institute of Optics and Mechanics, researcher Chen Wei from the academician team of Guo Guangcan from the Key Laboratory of Quantum Information of the Chinese Academy of Sciences of the University of Science and Technology of China, and professor Yang Jun from the School of Intell...

    02-19
    翻訳を見る
  • CU Boulder's liquid scanning technology can better observe brain activity

    CU Boulder published a study in Optical Letters demonstrating a new high-speed laser guidance method for imaging applications, using a fluid scanner built around an electrowetting prism to replace traditional mechanical components."Most laser scanners today use mechanical mirrors to steer beams of light," said Darwin Quiroz from CU Boulder."Our approach replaces that with a transmissive, non-mecha...

    10-20
    翻訳を見る
  • New type of "dynamic static dual sensing" charge coupled phototransistor

    With the development of cutting-edge technologies such as automatic guidance and embodied intelligence, machine vision has put forward higher requirements for image acquisition, requiring precise recording of static images and the ability to sensitively capture dynamic changes in the scene. The existing dynamic and active pixel sensor technology integrates two functions: dynamic event detection an...

    04-17
    翻訳を見る