日本語

Infinira launches an optical solution for 1.6 Tbps ICE-D data centers

442
2024-03-18 13:47:36
翻訳を見る

Infinira, an expert in optical network solutions, announced the launch of a high-speed data center optical transmission module based on single-chip indium phosphide (InP) photonic integrated circuit (PIC) technology. The company claims that the module will connect at a speed of 1.6 terabits per second (Tb/s), while reducing the cost and power consumption per bit.

Yingfeilang stated that its data center's optical connectivity technology can achieve highly integrated solutions, combining multiple optical functions onto a single single chip. This technology is part of Infinira's flexible data center's optical brand ICE-D.

The official press release stated, "The ICE-D test chip has been launched and has been proven to reduce power consumption per bit by 75%, while also improving connection speed."

According to Infinira, this product reduces power consumption per bit by 75% and improves connection speed in AI driven interconnections. The company also mentioned that the optical components within the ICE-D data center are designed to support integration into various internal and campus data center optical solutions.

The company stated that it is using its experience in optical connectivity solutions to address the challenges of economically expanding connectivity within data centers, in order to support the bandwidth flooding brought about by artificial intelligence applications.

Infinira stated, "Our unique single-chip InP PIC technology puts us in an ideal position to develop innovative technologies to provide cost-effective, high-capacity data center connectivity solutions."

Source: Laser Net

関連のおすすめ
  • Polarization polariton topology pointing towards a new type of laser

    Semi light, partially matter quasi particles, known as excitons polaritons, can easily bypass obstacles and condense into a single coherent state - both of which are characteristics of topological insulators. Researchers from the United States and China have developed a new technology to manufacture microcavities from chloride based halide perovskites. They expect this work to lead to a new type o...

    2024-05-30
    翻訳を見る
  • Google works with magic leap on AR optics and manufacturing

    In the 2010s, Magic leap is one of the most hyped augmented reality companies, with a lot of money, including from Google. When the magic leap one headset was introduced in 2018, it was not a technological breakthrough in display technology that was once derided. Since then, Magic leap has persevered and has now signed a "multifaceted strategic technology partnership" with Google.Google announced ...

    2024-05-31
    翻訳を見る
  • TRUMPF utilizes a laser driven X-ray source to improve electric vehicle batteries

    In the future, electric vehicle battery manufacturers can further improve the durability and performance of electric vehicle batteries through compact X-ray sources. The XProLas development partnership has now begun to develop these laser driven X-ray sources under the leadership of TRUMPF. The first batch of demonstration systems will be completed in 2026. In the future, manufacturers will be abl...

    2024-03-01
    翻訳を見る
  • The NIRPS alliance is driven by laser frequency comb technology to advance research on exoplanets

    The Near Infrared Red Planet Search Alliance, jointly managed by the Department of Astronomy at the University of Geneva and the University of Montreal, has received cutting-edge advances in CSEM laser frequency comb technology.The laser frequency comb is a precise and stable light source designed to help the NIRPS alliance unravel the mysteries of distant planets, including the possibility of sea...

    2023-12-13
    翻訳を見る
  • Polish and Taiwan, China scientists are committed to new 3D printing dental implants

    Researchers from Wroclaw University of Technology and Taipei University of Technology in China are developing dental implants made from 3D printed ceramic structures connected to metal cores. Due to the use of biodegradable magnesium, bone tissue will gradually grow into such implants."The result will be a composite implant that can replace human teeth. Its scaffold is made of aluminum oxide...

    2024-04-17
    翻訳を見る