日本語

Aston University is the first to adopt innovative laser detection technology using MEMS mirrors

840
2024-03-07 14:12:54
翻訳を見る

The School of Engineering and Physical Sciences at Aston University, located in Birmingham, UK, is at the forefront of exploring innovative laser detection methods and turbulence simulation. The plan revolves around the utilization of micro electromechanical mirrors, which have had a significant impact on various scientific fields over the past two decades.

MEMS reflectors have gained widespread recognition in the commercial field due to their application in digital projection, and are currently at the forefront of pioneering research in optical sensing and communication. The latest project at Aston University aims to leverage the properties of these micro mirror arrays, including their speed, wide spectral bandwidth, and high-power processing capabilities, to advance the development of wavefront control and optical sensing technology. The versatility of these devices has opened up new avenues for research and application, with the potential to completely change the way we manipulate light.

This project not only highlights the potential of MEMS reflectors in traditional fields, but also explores their applicability in new disciplines. Through this special issue, Aston University invites researchers to provide original articles and comments showcasing the widespread utility of micro mirror arrays. This collaboration aims to showcase the innovative applications of these arrays in different fields, emphasizing their transformative impact on optical technology.

Aston University encourages scholars and practitioners to submit their research findings and comments to this special issue. This plan aims to compile a series of comprehensive studies to demonstrate the multifaceted applications of MEMS reflectors. By breaking through existing known boundaries, this project aims to open up new research areas and further consolidate the position of micro mirror arrays as the cornerstone of optical technology innovation.

This effort not only emphasizes the importance of collaborative research in advancing scientific knowledge, but also highlights Aston University's commitment to promoting innovation in the fields of engineering and physical sciences. As the project progresses, significant progress is expected in laser detection, optical sensing, and communication, ultimately contributing to the development of more complex and efficient optical technologies.

Source: Laser Net

関連のおすすめ
  • Overview of Ultra Short Pulse Laser Processing of Wide Bandgap Semiconductor Materials

    Professor Zhang Peilei's team from Shanghai University of Engineering and Technology, in collaboration with the research team from Warwick University and Autuch (Shanghai) Laser Technology Co., Ltd., published a review paper titled "A review of ultra shot pulse laser micromachining of wide bandgap semiconductor materials: SiC and GaN" in the international journal Materials Science in Semiconductor...

    2024-07-30
    翻訳を見る
  • Dalian Institute of Chemical Physics has made progress in the interdisciplinary field of photochemistry and photophysics

    Recently, the team led by Wu Kaifeng, a researcher at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, and Zhu Jingyi, an associate researcher, has made progress in the interdisciplinary field of photochemistry and photophysics. The team directly observed the quantum coherence properties of hybrid free radical pairs composed of quantum dots and organic molecules, achieving ef...

    01-09
    翻訳を見る
  • American FMCW LiDAR listed company Aeva receives $50 million investment

    Recently, American FMCW LiDAR listed company Aeva announced a strategic partnership with a technology subsidiary of a Fortune Global 500 company to jointly introduce Aeva's fourth generation 4D LiDAR into emerging industrial and consumer markets.According to the agreement, the tech giant will provide a strategic investment of approximately $50 million to Aeva through subscription of Aeva common st...

    05-22
    翻訳を見る
  • Researchers at the Technion-Israel Institute of Technology have developed coherently controlled spin optical lasers based on single atomic layers

    Researchers at the Technion-Israel Institute of Technology have developed a coherently controlled spin optical laser based on a single atomic layer.This discovery was made possible by coherent spin-dependent interactions between a single atomic layer and a laterally constrained photonic spin lattice, which supports a high-Q spin valley through Rashaba-type spin splitting of photons of bound states...

    2023-09-12
    翻訳を見る
  • Luxiner launches modular laser processing solution Multiscan HE

    Recently, Luxiner, the leading brand in the field of laser technology in the UK, announced the launch of MultiSCAN ®  The latest members of CO2 laser systems - Multiscan HE 10i, 15i, and 25i. These new systems are presented in a completely independent form, integrating power, PC, and software, providing users with comprehensive solutions.The Multiscan HE 10i, 15i, and 25i not only inherit the indu...

    2024-06-07
    翻訳を見る