日本語

The Mysteries of Atmospheric Chemistry: Transient Absorption Spectroscopy Study Using FERGIE

359
2024-03-06 14:34:00
翻訳を見る

background
Dr. Daniel Stone's research team from the University of Leeds in the UK is primarily focused on the study of oxidation reactions in the atmosphere and combustion processes. Dr. Stone is particularly interested in the chemical reaction processes of active substances that can control atmospheric composition and fuel combustion processes, such as hydroxide (OH), peroxide (HO2), and Crigee intermediates. In order to complete relevant testing and experiments, he not only needs to conduct research in the laboratory, but also needs to conduct field measurements and numerical simulations.

Figure 1: Absorption spectroscopy experimental equipment connected to the FERGIE system
challenge
Dr. Stone has conducted extensive research on the kinetics of the Krich intermediate (CH2OO) in the laboratory in the past. By using laser induced fluorescence spectroscopy to monitor the reaction products of HCHO, his work for the first time directly measured the CH2O reaction kinetics with pressure as a parameter (Stone et al., 2014). His work also indicates that under atmospheric conditions with the presence of oxygen, the photolysis of CH2I2 can lead to the production of a large amount of CH2OO (Stone et al., 2013). This conclusion has had a significant impact on understanding the oxidation process in coastal iodine rich areas.

Since then, Dr. Stone's research team has been dedicated to developing an infrared absorption experiment based on Quantum Cascade Laser (QCL) to directly monitor the amount of Kriging intermediates and SO3 generated during the reaction between Kriging intermediates and SO2 under atmospheric conditions. These experiments can evaluate the impact of sulfuric acid and sulfate aerosols produced by Kriging chemical processes on the atmosphere, and further explore their impact on air quality and climate change.

Dr. Daniel Stone: "Once FERGIE was integrated into the previous experimental setup, I was able to freely determine the triggering factors and obtain relevant time-dependent data within one measurement day."

Solution
Dr. Stone designed a clever experiment by first using high-power laser pulses to perform flash photolysis on gas mixtures, and then using the FERGIE system (predecessor of Isoplane81) to measure the instantaneous absorption of the gas mixture after photolysis. By connecting the fiber optic cable to the existing fiber optic port of FERGIE in the experiment, the trigger input of FERGIE can be synchronously collected with the external delay generator.

By utilizing FERGIE's spectral dynamics mode (with a window height of 50 rows), the time scale of each spectrum can be shortened to 290 microseconds. This reduces the time scale of the experiment by 5-6 times, expanding the spectral absorption research that could only be conducted on the millisecond scale to the sub millisecond scale. If the experiment is repeated 100 times, the sensitivity will also be improved.

Figure 2: FERGIE spectrometer product diagram

Source: Sohu

関連のおすすめ
  • The LiDAR SLAM navigation system uses laser sensors to realize real-time 3D mapping of the environment

    Robotic lawn mowers are becoming increasingly popular due to their convenience and ability to save time and effort. Although robotic lawnmowers have made significant progress over the years, many robots still require users to lay perimeter wires to define the mowing area and remove any obstructions from the lawn to ensure the mower doesn't get stuck or damaged.Well, that's not the case with the Ne...

    2023-09-11
    翻訳を見る
  • Blue Laser Fusion plans to commercialize nuclear fusion reactors using laser technology by 2030

    Recently, a start-up company co founded by Nobel laureate Hideyoshi Nakamura in San Francisco plans to commercialize nuclear fusion reactors using laser technology around 2030.Hideyoshi Nakamura won the 2014 Nobel Prize in Physics for inventing blue light-emitting diodes. He founded Blue Laser Fusion in Palo Alto, California in November 2022. Partners include Hiroaki Ohta, former CEO of drone manu...

    2023-08-21
    翻訳を見る
  • Trumpf 3D printing technology innovation: zero support structure, low waste, unlimited possibilities

    Ditzingen, Germany, September 8, 2023) - TRUMPF, the world's leading provider of machine tools and laser technology solutions, has improved its 3D printing software TruTops Print to print parts with suspension angles as low as 15 degrees with little need for support structures. Trumpf will present its new technology at the European International Machine Tool Show (EMO 2023) in Hannover, Germany.Fi...

    2023-09-13
    翻訳を見る
  • New progress in research on laser cleaning and improving the damage threshold of fused quartz components at Shanghai Optics and Machinery Institute

    Recently, the research team of the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, has made new progress in the study of improving the damage threshold of fused quartz elements through laser cleaning. The study proposes for the first time the use of microsecond pulse CO2 laser cleaning to enhance the dam...

    2024-07-08
    翻訳を見る
  • Advanced optical giant Schott announces completion of Malaysia factory

    Recently, German optical giant SCHOTT is pleased to announce that its advanced production plant located in Gulim, Kedah, Malaysia has been successfully completed. This milestone event was celebrated with the joint witness of employees, clients, and representatives from the Malaysian Investment Development Authority (MIDA).The completion of the new factory marks a significant increase in Schott's...

    2024-10-16
    翻訳を見る