日本語

Researchers use laser doping to enhance the oxidation of IBC solar cells

715
2024-02-20 14:09:58
翻訳を見る

Researchers from the International Solar Research Center at Konstanz and Delft University of Technology have discovered a method to pattern the back end of a cross finger rear contact battery, improving its efficiency by making certain parts of the solar cell thicker.

Researchers have developed a new technology that enhances oxidation in selected areas by patterning the back or back of IBC solar cells through laser doping processes.
The team found that this led to more effective patterning and also served as a protective layer for further manufacturing steps. This provides potential for expanding manufacturing scale and achieving commercialization of solar energy technology.

The new method utilizes the enhanced oxidation performance of phosphate glass layers in the local laser doped region with high phosphorus concentration. This method is expected to make these cells more efficient.
Since the development of the first batch of IBC batteries in the early 1970s, they have been widely used as the back or non lighting side of solar cells.

Compared to traditional double-sided contact solar cells, the advantage of IBC cells is that they eliminate any optical shadow loss caused by the metal fingers and busbars on the front. This makes solar cells have a higher short-circuit current density and reduces the complexity of battery interconnection within the module.

Therefore, a more comprehensive front surface texture and light capture scheme can be used on the front surface of the IBC structure. This design architecture makes it the perfect component for mechanically stacked batteries using higher bandgap technology.

The Fraunhofer Solar Systems Research Institute, headquartered in Germany, also achieved a record 26% conversion efficiency of double-sided contact silicon solar cells in 2021. Due to its low complexity, it is favored in industrial production.
Last September, researchers from the Fraunhofer Solar Energy Institute ISE and NWO Institute AMOLF also developed a multi junction solar cell with an efficiency of a record breaking 36.1%. This method stacks multiple layers of absorbing materials together, allowing each layer to effectively capture specific parts of the solar spectrum.

Source: Laser Net

関連のおすすめ
  • Progress in the research and development of high-performance electrically pumped topology lasers in semiconductor manufacturing

    Topological laser (TL) is an ideal light source for future new optoelectronic integrated chips, designed and manufactured using topological optics principles to obtain robust single-mode lasers. Electrically pumped topology lasers have become a research hotspot due to their small size and ease of integration, but topology lasers based on electrical injection are still in the early stages of resear...

    2024-07-11
    翻訳を見る
  • Osram's new laser headlights "Yutianba" are unveiled

    Recently, OSRAM, a well-known global automotive lighting brand, announced the launch of its modified new laser headlights - the Yutianba laser headlights. Laser headlights were once regarded by many car companies as the "successor" of LED headlights, and German century old automotive lighting expert Osram is precisely the pioneer of laser light sources for automotive headlights. Since the 2014 BMW...

    2024-05-06
    翻訳を見る
  • San’an and Inari acquire Lumileds for $239 million

    San’an Optoelectronics, an LED chip manufacturer, based in China, and Inari Amertron Berhad, a Malaysian company that provides outsourced semiconductor assembly and test (“OSAT”) services to the semiconductor industry, are to acquire Lumileds Holding B.V. and its European and Asian subsidiaries (“Lumileds International”). Lumileds is based in Schiphol, The Netherlands.The all-cash deal is valued a...

    08-13
    翻訳を見る
  • A professor from Sun Yat sen University proposes a new clean energy technology for laser manufacturing

    Energy conversion technology is an important research direction in modern science and engineering. Scientists are exploring new catalytic chemical methods to achieve the conversion of energy chemicals, such as photocatalysis and electrocatalysis. However, these highly anticipated catalytic chemistry technologies still have some problems in practical applications, and there is still a certain dista...

    2024-06-13
    翻訳を見る
  • 国内自主研发首套碳化硅晶锭激光剥离设备投产

           近日,从江苏通用半导体有限公司传来消息,由该公司自主研发的国内首套的8英寸碳化硅晶锭激光全自动剥离设备正式交付碳化硅衬底生产领域头部企业广州南砂晶圆半导体技术有限公司,并投入生产。 图:8英寸SiC晶锭激光全自动剥离设备       该设备可实现6英寸和8英寸碳化硅晶锭的全自动分片,包含晶锭上料、晶锭研磨、激光切割、晶片分离和晶片收集,一举填补了国内碳化硅晶锭激光剥离设备领域研发、制造的市场空白,突破了国外的技术封锁,将极大地提升我国碳化硅芯片产业的自主化、产业化水平。       该设备年可剥离碳化硅衬底20000片,实现良率95%以上,与传统的线切割工艺相比,大幅降低了产品损耗,而设备售价仅仅是国外同类产品的1/3。       近年来,碳化硅功率器件在大功率半导体市场中所占的份额不断提高,并被广泛应用于新能源汽车、城市轨道交通、风力发电、高速移动、物联网等一系列领域...

    2024-08-26
    翻訳を見る