日本語

Researchers at Georgia Institute of Technology have developed cost-effective nanoscale printing

241
2024-02-19 15:31:14
翻訳を見る

A team of researchers from Georgia Institute of Technology has developed a scalable printing system for metal nanostructures using a new technology called superluminescent light projection. The inventor of this technology Dr. Sourabh Saha and Jungho Choi submitted a patent application for nanoscale printing.

Nowadays, the cost of existing nanoscale printing technologies hinders their widespread use and scalability. The femtosecond laser based technology currently used for printing complex 2D and 3D structures is slow and expensive, and often unaffordable for small and medium-sized batch manufacturing applications. These high-intensity femtosecond lasers can overcome optical diffraction limits, but they are costly. The current technology is still limited by the slow sequential printer system. An alternative light based printing system is needed, which can eliminate expensive lasers while achieving precise and detailed nanoscale printing of polymers and metals.

The potential applications of cost-effective nanoprinting include nanoscale patterned metal films, which are important components in nanodevices and applications, such as electrical interconnections in high-density printed electronics, plasma based metamaterials for biosensing and optical modulation, and microelectromechanical systems.

The SLP system developed by Georgia Institute of Technology provides several advantages for nanoscale printing processes: lower cost, higher speed, and finer resolution. The light source is a type of super light-emitting diode, which is 100 times cheaper than the currently used lasers, thereby reducing the overall printing cost by 10-50 times. By utilizing the specific effects of superluminescent light projection, sharp edge images with minimal speckle patterns can be created, resulting in high-resolution images and structures on polymer and metal based films.

Moreover, by implementing a parallel writing mechanism, the system significantly improves throughput speed, which is 100 times faster than existing metal printing methods and 4 times faster than existing polymer printing methods. These advantages create an easily scalable system for various industrial needs and make nanoscale printing a viable resource for a larger manufacturing audience.

The proposed solution has several advantages. Firstly, it is cost-effective, utilizing existing SLEDs that are much cheaper than commonly used femtosecond lasers, thereby greatly reducing the cost of nanoscale printing. Secondly, due to its parallel writing system, it has higher speed and can achieve faster throughput, especially in metal printing. Compared with existing technologies, it is at least 100 times faster, and polymer printing is at least 4 times faster. Thirdly, unlike other nanoscale printing methods, it provides flexibility by adapting to polymer and metal printing. In addition, it also has scalability, lower lighting costs, higher printing speeds, and the potential for layer stacking to create 3D structures, making it suitable for different manufacturing environments. Finally, due to the use of high numerical aperture oil immersed lenses with superluminescent light, it provides excellent resolution, thereby enhancing oblique light capture and improving printing resolution.

The potential commercial applications of this solution are diverse and have broad prospects. They include micro optical devices for quantum devices, which can fundamentally change various fields by improving the performance of quantum technology. The application of plane optics and photonic quantum devices in photonics provides new avenues for advanced optical systems. In addition, this solution may help to produce printed structures for photoconductive chips, which are key components of technologies such as laser radar systems used in autonomous vehicle, thus contributing to the progress of autonomous vehicle. In addition, this technology can also be used to develop microfluidic chips and micro robots for biomedical and drug delivery applications, thereby achieving precise and efficient delivery mechanisms at the microscale. In addition, it has broad prospects in the field of printed electronics, helping to manufacture electronic components with complex designs and functions. Finally, printed batteries represent another potential application, providing customizable and compact power solutions for various devices and systems. Overall, the versatility of this solution has opened up numerous business opportunities for various industries.

Source: Laser Net

関連のおすすめ
  • Application of Multipurpose Femtosecond Laser Interferometry in High Precision Silicon Nanostructures

    Researchers from the Laser Processing Group of the IO-CSIC Institute of Optics in Spain report on the application of multi-purpose femtosecond laser interference in high-precision silicon nanostructures. The related research was published in Optics&Laser Technology with the title "Versatile femtosecond laser interference pattern applied to high precision nanostructured of silicon".Highlights:...

    2024-07-10
    翻訳を見る
  • Focused Energy purchases two world-class high-energy lasers

    Recently, Focused Energy, a well-known foreign fusion energy startup, announced that it has officially signed an agreement to purchase two of the world's top high-energy lasers. These two large lasers will be deployed in the company's upcoming factory in the San Francisco Bay Area in the next two years.Scott Mercer, CEO of Focused Energy, stated, "These lasers are currently the highest average pow...

    2024-12-25
    翻訳を見る
  • Which automotive parts can use laser soldering technology

    Laser soldering is widely used in the manufacturing of automotive parts. Here are some common automotive parts that can be welded using laser soldering:Automotive electronic control systemEngine Control Unit (ECU): The engine control unit is the "brain" of the car engine, which receives signals from various sensors and controls the operation of the engine based on these signals. Laser soldering ca...

    02-10
    翻訳を見る
  • The tesat optical terminal selected by Lockheed Martin satellite has passed ground testing

    Tesat Spacecom's laser communication terminal announced on October 26th that the company has passed critical ground testing deployed on NASA satellites.Tesat's SCOTT80 optical terminal was selected by Lockheed Martin, one of several manufacturers producing satellites for the Space Development Agency.SDA is an agency under the United States Space Force that plans to deploy a network of interconnect...

    2023-10-27
    翻訳を見る
  • The Mysteries of Atmospheric Chemistry: Transient Absorption Spectroscopy Study Using FERGIE

    backgroundDr. Daniel Stone's research team from the University of Leeds in the UK is primarily focused on the study of oxidation reactions in the atmosphere and combustion processes. Dr. Stone is particularly interested in the chemical reaction processes of active substances that can control atmospheric composition and fuel combustion processes, such as hydroxide (OH), peroxide (HO2), and Crigee i...

    2024-03-06
    翻訳を見る