日本語

The First Operation of Two Color Mode in Infrared Free Electron Laser

520
2024-02-18 10:10:09
翻訳を見る

The Fritz Haber Institute of the Max Planck Institute in Berlin has achieved a technological milestone. The infrared free electron laser operates in dual color mode for the first time. This globally unique technology makes it possible to conduct experiments on synchronous dual color laser pulses, opening up new possibilities for research.

There are over a dozen free electron lasers worldwide, with significant differences in size, wavelength range, and cost. However, they all generate strong short radiation pulses. In the past few decades, free electron lasers have become an important radiation source and have been widely applied in basic research and applied science.

FHI researchers have now collaborated with American partners to develop a method that can simultaneously generate two different colored infrared pulses. This innovation is particularly important for studying the temporal processes of solids and molecules.

In FEL, the electron beam is first accelerated by an electron accelerator to a very high kinetic energy, reaching a speed close to the speed of light. Then, the fast electrons pass through a undulator, where they are forced into a path similar to a turbulent vortex by a strong magnetic field with periodic changes in polarity.

The oscillation of electrons leads to the emission of electromagnetic radiation, and its wavelength can be changed by adjusting the electron energy and/or magnetic field strength. For this reason, FEL can be used to generate laser like radiation in almost all parts of the electromagnetic spectrum, ranging from long terahertz to short X-ray wavelengths.

Since 2012, FEL has been operating at FHI, generating strong pulsed radiation in the mid infrared range, with wavelengths continuously adjustable in the range of 2.8 to 50 micrometers. In recent years, scientists and engineers at FHI have been dedicated to dual color expansion, installing a second FEL branch to generate far-infrared radiation with wavelengths between 5 and 170 microns.

The FIR-FEL branch includes a new hybrid magnet wave generator, which was specifically built at FHI. In addition, a 500 MHz kick chamber is installed behind the electron linear accelerator for lateral electron deflection. The kicking chamber can change the direction of high-energy electron beams at a speed of 1 billion times per second.

In June 2023, the FHI team demonstrated the first "laser" of the new FIR-FEL, guiding all electron beams from LINAC to FIR-FEL. In December 2023, they demonstrated the dual color operation for the first time. In this mode, the strong oscillating electric field formed in the kicking chamber causes every two electron beams to deflect to the left and every other electron beam to deflect to the right.

In this way, the high repetition rate electron beam from LINAC is divided into two beams, with each beam having half the repetition rate; One is guided to the old MIR-FEL, and the other is guided to the new FIR-FEL. In each FEL, changing the magnetic field intensity of the oscillator can continuously tune the wavelength up to four times.

For about a decade, FHI-FEL has enabled FHI's research team to conduct experiments on nonlinear solid-state spectroscopy and surface science from the spectra of clusters, nanoparticles, and biomolecules in the gas phase. To date, there have been approximately 100 peer-reviewed publications.

The new dual color mode is not available in any other IR FEL facility worldwide, and it will enable new experiments such as MIR/MIR and MIR/FIR pump probe experiments. This is expected to open up new opportunities for experimental research in different fields such as physical chemistry, materials science, catalytic research, and biomolecular research, thereby contributing to the development of new materials and drugs.

Source: Laser Net

関連のおすすめ
  • Shandong Zhancheng Intelligent Manufacturing Laser Cutting Equipment is Popular Overseas

    The high-end laser cutting machine developed and produced by Dongying Lijin Zhancheng Laser Intelligent Manufacturing Company has become popular in overseas markets this spring. This equipment can not only use laser to quickly cut steel, but also freely swing on steel, "showing" beautiful pictures. The laser travels like a paintbrush flying, and the hard steel plate has been hollowed out into be...

    03-21
    翻訳を見る
  • The Mysteries of Atmospheric Chemistry: Transient Absorption Spectroscopy Study Using FERGIE

    backgroundDr. Daniel Stone's research team from the University of Leeds in the UK is primarily focused on the study of oxidation reactions in the atmosphere and combustion processes. Dr. Stone is particularly interested in the chemical reaction processes of active substances that can control atmospheric composition and fuel combustion processes, such as hydroxide (OH), peroxide (HO2), and Crigee i...

    2024-03-06
    翻訳を見る
  • Cobot Systems announces the establishment of a partnership between UR+and its laser welding collaborative robot system

    Cobot Systems announced that it has now become a UR+partner and showcased laser welding unit systems. This honor marks an important milestone in the company's journey of providing widely available automated labor solutions. This approval highlights Cobot Systems' commitment to providing innovative solutions compatible with UoRobot (UR) products, ensuring seamless collaboration with integrated lase...

    2024-05-16
    翻訳を見る
  • A new method for generating controllable optical pulse pairs using a single fiber laser

    Researchers from Bayreuth University and Konstanz University are developing new methods to control ultra short laser emission using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse interval of lasers is set by dividing each pulse into two pulses and delaying them at different, mechani...

    2024-01-15
    翻訳を見る
  • Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity

    Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity - a quantum cavity is an optical device composed of two excellent small mirrors that can capture light in a small area for a long time.This model and its predictions can be used for the next generation of superradiance lasers. They can be used and observed in cutting-edge cavity/wa...

    2024-02-21
    翻訳を見る