日本語

Researchers are studying lasers for controlling magnetic ripple interactions

640
2024-02-11 19:24:33
翻訳を見る

One vision for computing the future is to use ripples in magnetic fields as the fundamental mechanism. In this application, magnetic oscillators can be comparable to electricity and serve as the foundation of electronic products.

In traditional digital technology, this magnetic system is expected to be much faster than today's technology, from laptops and smartphones to telecommunications. In quantum computing, the advantages of magnetism include not only faster speeds, but also more stable devices.

A recent research report published in the journal Nature Physics reported an early discovery on the road to developing magnetic computers. Researchers generated two different types of ripples in the magnetic field of thin alloy plates, measured the results, and indicated that the magnetic oscillators interact in a nonlinear manner. "Nonlinear" refers to outputs that are not proportional to the input, which is a necessity for any type of computing application.

So far, most research in this field has focused on one type of magnetic oscillator, which is described as equilibrium under relatively stable conditions. As done in these studies, manipulating magnetic oscillators can cause the system to lose balance.

This is one of the many studies conducted through years of collaboration between theorists and experimenters from multiple scientific and engineering fields, including the second study recently published in the journal Nature Physics. This project has received support from both government and private funders, bringing together researchers from the University of California, Los Angeles, Massachusetts Institute of Technology, University of Texas at Austin, and University of Tokyo in Japan.

"Together with our colleagues, we have begun a movement that I call stimulating progress in non-equilibrium physics," said Prineha Narang, co-author of the study and professor of physics at the University of California, Los Angeles. The work we are doing here fundamentally advances the understanding of non-equilibrium and nonlinear phenomena. It may be a step towards computer memory, utilizing ultrafast phenomena that occur around one billionth of a second.

A key technology behind these findings is an advanced technique for adding energy to samples and evaluating them using lasers with frequencies in the terahertz range, located between microwave and infrared radiation wavelengths. This method comes from chemical and medical imaging and is rarely used to study magnetic fields.

Nalang, a member of the California Nanosystems Institute at the University of California, Los Angeles, said that the use of terahertz lasers indicates potential synergies with increasingly mature technologies.

"The terahertz technology itself has reached the point where we can talk about a second technology that relies on it," she said. It makes sense to perform this type of nonlinear control in the frequency band where we have lasers and detectors that can be placed on chips. Now is the time to truly move forward, because we have both technical and interesting theoretical frameworks, as well as theoretical frameworks for studying the interactions between magnetic oscillators.

Researchers applied laser pulses to a 2mm thick plate made of carefully selected alloys containing yttrium, a metal used in LED and radar technology. In some experiments, a second terahertz laser was used in a coordinated manner, which paradoxically increased energy but helped stabilize the sample.

The magnetic field is applied to yttrium in a specific way, allowing only two types of magnetic oscillators. Researchers can drive two types of magnetic oscillators individually or simultaneously by rotating the sample to a specific angle relative to the laser. They are able to measure the interaction between two types and find that they can cause nonlinear responses.
"Clearly demonstrating this nonlinear interaction is important for any signal processing based application," said co author and postdoctoral researcher Jonathan Curtis at the University of California, Los Angeles NarangLab. A mixed signal like this allows us to convert between different magnetic inputs and outputs, which is necessary for devices that rely on magnetic manipulation information.

Narang said that trainees are crucial for current research and larger projects.
"This is a very arduous multi-year effort, involving many parts," she said. What is the right system, how do we use it? How do we consider making predictions? How do we limit the system to run the way we want? Without talented students and postdoctoral fellows, we will not be able to do this.

This study includes Keith Nelson, a chemistry professor at the Massachusetts Institute of Technology, Eduardo Baldini, a physics professor at UT Austin, and a team led by Narang from the University of California, Los Angeles, with support from the Quantum Science Center, which is the National Quantum Information Science Research Center of the Department of Energy and is headquartered at the Oak Ridge National Laboratory. This study is primarily supported by the Ministry of Energy, as well as the Alexander von Humboldt Foundation, Gordon and Betty Moore Foundation, John Simon Guggenheim Memorial Foundation, and Japan Association for the Advancement of Science, all of which provide ongoing support for collaboration.

Source: Laser Net

関連のおすすめ
  • Researchers successfully 3D printed polymer based robotic arms through laser scanning

    Researchers from the Federal Institute of Technology in Zurich and an American startup used slow curing plastic to develop durable and sturdy robots using high-quality materials.The team can now print these complex robots at once and combine soft, elastic, and rigid materials together. This allows for the creation of precision structures and parts with cavities as needed.Inkbit, a derivative compa...

    2023-11-16
    翻訳を見る
  • The research team from the School of Engineering at Columbia University in the United States has broken through the "bandwidth bottleneck" of high-performance computing in new photonic chips

    When running various artificial intelligence programs such as large language models, although data centers and high-performance computers are not limited by the computing power of their individual nodes, the amount of data transmitted between nodes is currently the root cause of the limitations on the performance and bandwidth transmission of these systems.Because some nodes in the system are more...

    2023-10-31
    翻訳を見る
  • Amada launches latest precision laser welding workstation wl-300a

    Recently, Amada weld tech Inc., a Japanese supplier of welding and cutting solutions, grandly launched a new wl-300a precision laser welding workstation, which is equipped with advanced continuous wave (CW) or quasi continuous wave (QCW) fiber lasers. It has a wide range of applications, especially for metal welding and processing of selected plastic materials, especially in the aerospace field.Wl...

    2024-05-31
    翻訳を見る
  • Artists transform paper into meticulous laser cutting designs

    In the past few years, paper artists have demonstrated the versatility of their common fiber materials. Some people manually cut or carve paper, while others combine traditional craftsmanship with digital design. Ibbini Studio is in this situation. Abu Dhabi artist Julia Ibni collaborated with computer scientist Stephen Noye to create sculptural paper works inspired by decorative patterns such as ...

    2024-01-23
    翻訳を見る
  • The world's highest power industrial grade fiber laser is released in Tianjin

    On August 31st, Tianjin Kaipulin Optoelectronics Technology Co., Ltd. (hereinafter referred to as Kaipulin), a Tianjin Port Free Trade Zone enterprise, officially released the world's first 200000 watt ultra-high power industrial grade fiber laser, breaking the record for the highest power of industrial grade fiber lasers in the world and marking China's stable position in the international advanc...

    2024-09-02
    翻訳を見る