日本語

Single photon avalanche diode for millimeter level object recognition using KIST

215
2024-02-03 10:17:08
翻訳を見る

LiDAR sensors are crucial for implementing modern technologies such as autonomous driving, AR/VR, and advanced driving assistance systems. For example, more accurate shape detection in AR/VR devices and smartphones depends on the improved range resolution of medium and short range LiDAR. This requires a single photon detector with improved timing jitter performance.

LiDAR calculates the distance and generates a three-dimensional image by measuring the time it takes for photons released by the transmitter to impact an object, reflect and return to the receiver. The higher the accuracy of object recognition, the smaller the value of "timing jitter", which is a small change in detection time when a single photon detector on the receiver converts an optical signal into an electrical signal.

According to the Korean Academy of Science and Technology, under the guidance of Dr. Myung Jae Lee, a team from the Institute of Postsilicon Semiconductors has created a "single photon avalanche diode" that can recognize millimeter level objects using 40nm backlit CMOS image sensor technology.

The development of SPAD is extremely difficult, and currently only Sony in Japan has successfully commercialized LiDAR based on SPAD and supplied it to Apple products based on its 90nm backlit CMOS image sensor technology.

Although the timing jitter performance of Sony SPAD is about 137-222 ps, it is not yet sufficient to achieve the user recognition, gesture recognition, and precise shape recognition of objects required for medium and short distance LiDAR applications. Sony's SPAD is more effective than the backlit SPAD reported in the literature.

The single photon sensor element developed by KIST has more than twice the jitter performance at 56 ps, with a distance resolution of about 8 mm, and has great potential as a medium to short range LiDAR sensor element.

Specifically, SPAD was created based on 40nm backlit CMOS image sensor technology through collaborative research with SK Hynix, and is expected to be immediately localized and commercialized.

This study was funded by the Korea Institute of Science and Technology and the Korea National Research Foundation, and was highlighted at the 2023 International Conference on Electronic Devices held in San Francisco, USA on December 12, 2023, from December 9 to 13.

IEDM is one of the most important conferences for semiconductor industry and research professionals, attended by major global semiconductor companies such as SK Hynix, Samsung Electronics, and Intel.

Source: Laser Net

関連のおすすめ
  • Dutch satellite instruments have achieved milestone achievements in transmitting laser data to Earth

    TNO wrote that this is the first time Dutch technology has been used to send data from a satellite to a ground station press release on Earth. This technology uses invisible laser signals to achieve faster and safer data flow compared to ubiquitous communication radio frequencies.Kees Buijsrogge, Director of TNO Space, said, "This critical milestone marks a significant achievement for the Netherla...

    2024-01-25
    翻訳を見る
  • Focused Energy purchases two world-class high-energy lasers

    Recently, Focused Energy, a well-known foreign fusion energy startup, announced that it has officially signed an agreement to purchase two of the world's top high-energy lasers. These two large lasers will be deployed in the company's upcoming factory in the San Francisco Bay Area in the next two years.Scott Mercer, CEO of Focused Energy, stated, "These lasers are currently the highest average pow...

    2024-12-25
    翻訳を見る
  • Swedish KTH develops 3D printed quartz glass micro optical devices on optical fibers

    In what has been described as the "first communication", Swedish researchers conducted 3D printed quartz glass micro optical devices on the tip of optical fibers. They said that this progress could lead to faster Internet and better connectivity, as well as innovations such as smaller sensors and imaging systems.Scientists from the KTH Royal Institute of Technology in Stockholm have stated that co...

    2024-05-23
    翻訳を見る
  • High sensitivity visualization of ultrafast carrier diffusion using a wide field holographic microscope

    A sketch of the imaging and holographic parts of a transient holographic microscope, including a pulse sequence, to illustrate the signal modulation method. By imaging the pinhole array at the sample position, a diffraction limited excitation spot array can be created, allowing for the simultaneous collection of transient data around 100 excitation spots.Femtosecond transient microscopy is an impo...

    2023-12-25
    翻訳を見る
  • The company has made key breakthroughs in the development of laser micromachining systems

    3D-Micromac AG, a provider of laser micromachining systems, has announced new advances in laser micromachining solutions for magnetic sensors, micro-leds, manufactured power devices and advanced packaging of semiconductors.Since the first working laser came out more than 60 years ago, lasers have been widely used in the industrial market. Uwe Wagner, CEO of 3D-Mircomac, said: "In the semic...

    2023-08-04
    翻訳を見る