日本語

On demand ultra short laser flash: controllable optical pulse pairs from a single fiber laser

403
2024-01-12 13:56:39
翻訳を見る

Set up a dual comb fiber laser oscillator, external pulse combination, and real-time detection.
In innovative methods for controlling ultra short laser flashes, researchers from Bayreuth University and Konstanz University are using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.

Traditionally, the pulse interval of a laser is set by dividing each pulse into two pulses and delaying them at different mechanically adjustable distances. Alternatively, two laser sources with slightly different orbital periods ("double combs") can be used to generate rapid travel delays from the superposition of two pulse combs.

Professor Georg Herink, the leader of the Experimental Physics VIII - Ultra Fast Dynamics group at Bayreuth University, and his doctoral student Julia A. Lang collaborated with Professor Alfred Leinstorfer and Sarah R. Hutter from the University of Constance to demonstrate a pure optical method based on two pulse combs in a single laser. It can achieve extremely fast and flexible adjustable pulse sequences.

Meanwhile, this can be achieved in very compact fiberglass light sources. By combining two pulse combs outside the laser, researchers have obtained a pulse mode that can be set with any delay as needed.

The researchers used a technique: two pulses circulate in the laser instead of the usual single light pulse. "There is enough time between two pulses to apply a single 'interference' using the fast optical switch inside the laser," explained Lang, the first author of the study. "Using laser physics, this' intracavity modulation 'causes a change in pulse velocity, causing two pulses to move towards each other in time."

The laser source based on fiberglass was built by Hutter and Leitenstorfer from the University of Constance. Thanks to a special real-time measurement method, researchers at Bayreuth can now accurately observe how short light pulses (called solitons) move when external influences act on them. This real-time spectral interferometry method can accurately measure the distance between each pair of pulses - over 10 million times per second.

"We have demonstrated that we can quickly adjust time over a wide range and achieve freely programmable motion forms," explained Herink. The research now published in Progress in Science proposes an innovative method for controlling solitons, which not only provides new insights into soliton physics, but also opens up possibilities for the rapid and efficient application of ultra short laser pulses.

Source: Laser Net

関連のおすすめ
  • Laser assisted detection of past climate in ice cores

    Around the poles, ice accumulated over millions of years can reach depths of several kilometers. The undisturbed deep ice preserves information about the past. The air bags and particles trapped in the ice tell scientists what the atmosphere used to be like. This has aroused great interest among paleoclimatologists in glacier ice cores.By regularly sampling the ice core at its depth, they can reco...

    2023-11-01
    翻訳を見る
  • The Indian medical laser market has entered a rapid growth mode

    According to industry forecasts, the medical laser market in India, especially in the field of medical aesthetics, is expected to be worth up to 71572 million rupees in fiscal year 2023. It is expected that this number will increase to 1.8358 billion rupees by fiscal year 2031, with a compound annual growth rate of 12.49%.Alma Medical, a global innovator in the field of medical lasers in Israel, h...

    2024-07-05
    翻訳を見る
  • Laser printing on fallen leaves can produce sensors for medical and laboratory use

    The manufacturing of sensors through 3D printing combines speed, design freedom, and the possibility of using waste as a substrate. In the circular economy model, various results have been achieved, and typically discarded residues are used as low-cost resources. A research team in Brazil has proposed a highly creative solution that involves printing electrochemical sensors on fallen leaves. The t...

    2024-05-16
    翻訳を見る
  • Silicon Valley giants compete for a new 3D printing space race track

    Recently, Eric Schmidt, former CEO of Google, will take over as CEO of Relativity Space, marking his first CEO position since leaving Google.Relativity Space is known for producing rockets using unusual technologies, including 3D printers, automated robots, and artificial intelligence. In 2023, Relativity Space successfully launched the Terran 1 rocket, proving that its 3D printing technology can ...

    03-24
    翻訳を見る
  • Laser chip manufacturer Shijia Photon will make a profit of 65 million yuan in 2024

    Shijia Photon disclosed its 2024 annual performance forecast on the evening of January 17th, expecting to achieve a revenue of 1.074 billion yuan in 2024, a year-on-year increase of 42.36%; Net profit attributable to the parent company was 65 million yuan, with a loss of 47.55 million yuan in the same period last year; Deducting non net profit is expected to be 48.1 million yuan, with a loss of 66...

    01-21
    翻訳を見る