日本語

From Colored Glass Windows to Lasers: Nanogold Changes Light

191
2024-01-02 15:31:28
翻訳を見る

For a long time, craftsmen have been fascinated by the bright red color produced by gold nanoparticles scattered in colored glass masterpieces. The quantum origin of this optical miracle has always been mysterious, until modern advances in nanoengineering and microscopy revealed the complexity of plasma resonance.

Now, researchers are preparing to push nano plasma technology, which was once used for art, towards emerging applications in photonics, sensing, and amplification.

Due to the ongoing challenge of manufacturing metal nanoparticles by precisely controlling the size, concentration, and dispersion of the glass itself, research on these unique plasma characteristics has slowed down. Early manufacturing techniques have been proven to be unreliable when applied to tellurite glass, which also possesses the ideal quality of embedded nanophotonic devices.

However, the implementation of many attractive applications of tellurites largely relies on the introduction and control of nanoscale metal features to propagate longitudinal light through plasma. Despite great interest, reliably combining customized metal nanostructures to activate plasma effects in tellurite glasses remains a persistent technical obstacle that hinders progress.

Tellurite glass has become a very promising medium for embedded photonic devices. It has unique properties, including wide infrared transparency covering half of the solar spectrum, high solubility allowing for strong luminescence of rare earths, and relatively low processing temperatures. Tellurite glass has moderate phonon energy and minimal interference with radiative transitions, thus achieving effective light emission and amplification. In addition, tellurite glass exhibits extraordinary anti crystallization stability.

These comprehensive characteristics make tellurite glass an ideal platform for developing active and passive photonic components, from amplifiers and color converters to planar waveguides and lasers. Specifically, its optical advantages provide the ability to guide light and utilize light transitions of rare earth elements in common material systems.

The latest research in collaboration between Australia and Germany has paved the way for the development and exploration of plasma enhanced optical effects in this special medium by developing a technology for systematically manufacturing gold nanoparticles with adjustable plasma response inside tellurite glass. Controlling these plasma entities at the nanoscale opens up possibilities for advancing photonic devices containing tellurite materials.

These material scientists have developed new technologies to systematically manufacture gold nanoparticles, providing adjustable plasma resonance bands in tellurite glass substrates. Their research provides a roadmap for consciously designing the characteristics of nanoparticles to advance photonics and sensing research.

By addressing the ongoing challenge of reliably manufacturing gold nanoparticles with adjustable plasma response, researchers have opened the door to exploring the plasma effect in tellurite glasses. Their technology has overcome previous obstacles to such research, allowing for conscious control of nanoparticle properties such as size and spacing.

Source: Laser Net

関連のおすすめ
  • Bitsensing, a South Korean LiDAR solution provider, successfully raised 180 million yuan in funding

    Recently, Bitsensing, a leading provider of advanced radar solutions in South Korea, announced the successful completion of Series B financing, with a financing amount of up to $25 million (approximately RMB 181.6 million).This major investment is led by a series of well-known venture capital firms and strategic investors, which not only demonstrates Bitsensing's leading position in the radar tech...

    2024-06-27
    翻訳を見る
  • Defects and solutions that are prone to occur when laser welding square shell battery explosion-proof valves for power batteries

    For example, the commonly used square shell battery cells for power batteries include laser welding of cover explosion-proof valves, laser welding of pole columns, and laser welding of cover plates and shells. During the process of laser welding of aluminum alloy, it is easy to generate unqualified phenomena such as explosion points, pores, welding cracks, excessive depth and width of fusion. ...

    2023-09-15
    翻訳を見る
  • Two Enterprises Collaborate to Overcome Optical Pollution in Vacuum Laser Welding

    Cambridge Vacuum Engineering (CVE), a precision welding equipment company in the UK, and Cranfield University recently announced that they have successfully reached a Knowledge Transfer Partnership (KTP), which will provide global engineers with more welding options.In this cooperation, both parties jointly solved the optical pollution problem in vacuum laser welding, paving the way for the compre...

    2024-02-03
    翻訳を見る
  • New discoveries bring progress in photon calculation

    International researchers led by Philip Walther from the University of Vienna have made significant breakthroughs in the field of quantum technology, successfully demonstrating quantum interference between multiple single photons using a new resource-saving platform. This work, published in Science Advances, represents a significant advancement in the field of quantum computing and paves the way f...

    2024-04-27
    翻訳を見る
  • BAE conducts laser pipeline scanning tests at the shipyard

    BAE Systems Australia has successfully conducted experiments at the Osborne Naval Shipyard and Henderson Shipyard, using laser scanning technology to create 3D models of pipelines that will be installed on the currently under construction Hunter class frigates.A one week trial was conducted at the Zero Line Future factory in southern Adelaide and BAE Systems Australia's Henderson Shipyard, demonst...

    2023-12-13
    翻訳を見る