日本語

Allocate 10 billion US dollars! New York State to Build NA Extreme UV Lithography Center

355
2023-12-15 13:57:53
翻訳を見る

On December 11th local time, New York State announced a partnership with companies such as IBM, Micron, Applied Materials, and Tokyo Electronics to jointly invest $10 billion to expand the Albany NanoTech Complex in New York State, ultimately transforming it into a high numerical aperture extreme ultraviolet (NA EUV) lithography center to support the development of the world's most complex and powerful semiconductors.

This new factory, covering an area of 50000 square feet, will begin construction in 2024. A $10 billion investment is expected to help build North America's first and only publicly owned high numerical aperture extreme ultraviolet (NA EUV) lithography center.

It is reported that the new factory is expected to further expand in the future, which will encourage growth in future partners and support new initiatives such as the National Semiconductor Technology Center, the National Advanced Packaging and Manufacturing Program, and the Department of Defense's Microelectronics Sharing Program.

High numerical aperture extreme ultraviolet (NA EUV) lithography technology is the key to the manufacturing of next-generation (2nm and below) cutting-edge process chips. The collaboration between New York State and major semiconductor companies in the United States and Japan to establish the High-NA EUV semiconductor research and development center is mainly aimed at helping local American manufacturers further enhance their design and manufacturing capabilities in the field of cutting-edge semiconductor processes. They hope to obtain financial support through the Chip Act. State government officials have also provided incentives for these manufacturing facilities.

The statement shows that NY Create, a non-profit organization responsible for coordinating the construction of the facility, is expected to use $1 billion in state government funds to purchase TWINSCAN EXE: 5200 lithography equipment from ASML. Once the device is installed, relevant partners will be able to start researching the next generation of chip manufacturing. The plan will create 700 jobs and bring in at least $9 billion in private investment.

According to the plan, NY CREATES will purchase and install high numerical aperture extreme ultraviolet (NA EUV) lithography tools designed and manufactured by ASML. The instrument is equipped with a technology in which the path in the laser etching circuit exceeds the ultraviolet spectrum on a micro scale. Ten years ago, this process was the first to etch channels for 7-nanometer and 5-nanometer chip processes, and currently has the potential to develop and produce chips with nodes smaller than 2 nanometers - as early as 2021, IBM overcame this obstacle.

The EUV machines currently used in the market and industry are unable to generate the resolution required for sub 2nm nodes, in order to facilitate large-scale production and make them into chips. According to IBM, although current machines can provide the necessary level of accuracy, they require three to four EUV light exposures instead of one exposure. The increase in high NA can create larger optical devices and support printing higher resolution patterns on wafers.

Although researchers need to consider the issue of shallower focusing depth caused by increased aperture, IBM and its partners believe that this technology can drive the adoption of more efficient chips in the near future.
In terms of talent, the plan also includes collaborating with State University of New York to support and build talent development channels.

Source: OFweek

関連のおすすめ
  • Researchers have developed a quantum cascade laser in Italy

    The first all-Italian quantum cascade laser was born at the National Research Center in Pisa. The protagonists of this milestone are two researchers from the Nanoscience Institute, Lucia Sorba and Miriam Serena Vitiello, who together with their research team designed and developed this innovative device.In fact, quantum cascade lasers have unique potential for detecting gases and other molecules, ...

    2023-08-04
    翻訳を見る
  • Additive manufacturing of free-form optical devices for space use

    A group of researchers and companies are using the iLAuNCH Trailblazer program to develop and identify new optical manufacturing processes and materials for space flight applications, and demonstrating them in space cameras.The University of South Australia, together with SMR Australia and VPG Innovation, will utilize an emerging optical manufacturing technology called freeform optics, which is no...

    2023-12-04
    翻訳を見る
  • Progress in the Study of Nonlinear Behavior of Platinum Selenide Induced by Strong Terahertz at Shanghai Optics and Machinery Institute

    Recently, the research team of the State Key Laboratory of Intense Field Laser Physics of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research on the nonlinear behavior and mechanism of platinum selenide in terahertz band. The research team systematically studied the spectral and optical intensity characteristics of platinum selenide und...

    2024-05-23
    翻訳を見る
  • Germany's leading optoelectronics industry (Jenoptik) in the first half of the gold over 4.2 billion

    On August 9, local time, Germany's leading optoelectronics company Jenoptik released its 2024 second quarter interim financial results forecast. The financial data show that the company in the challenging market environment still shows strong growth momentum.In the first half of the year, Jenoptik achieved significant growth in revenue and earnings before interest, taxes, depreciation and amortiza...

    2024-08-15
    翻訳を見る
  • Westlake University has made significant breakthroughs in the field of flexible stacked solar cells

    Recently, the team led by Wang Rui from the Future Industry Research Center and the School of Engineering at Xihu University has made significant breakthroughs in the field of flexible stacked solar cells. They have successfully stacked perovskite and copper indium gallium selenide materials together, resulting in a photoelectric conversion efficiency of 23.4%. The related research paper was recen...

    02-05
    翻訳を見る