日本語

The NIRPS alliance is driven by laser frequency comb technology to advance research on exoplanets

391
2023-12-13 14:17:56
翻訳を見る

The Near Infrared Red Planet Search Alliance, jointly managed by the Department of Astronomy at the University of Geneva and the University of Montreal, has received cutting-edge advances in CSEM laser frequency comb technology.

The laser frequency comb is a precise and stable light source designed to help the NIRPS alliance unravel the mysteries of distant planets, including the possibility of searching for extraterrestrial life.
This technology has also been implemented at the La Silla Observatory of the European Southern Observatory in Chile.

The NIRPS alliance is expanding research on exoplanets
Through collaboration, researchers hope to expand research on exoplanets. Exoplanets are described as "cosmic nomads" and have been attracting scientists for about thirty years.

The NIRPS alliance aims to measure their weight, temperature, and atmosphere. NIRPS is a highly advanced spectrometer that can carefully examine the light emitted by distant stars and detect changes caused by the gravitational pull of planets in their orbits.

Implementing laser frequency comb technology
Now, the NIRPS spectrometer has been implemented together with the laser frequency comb developed by CSEM. The light generated by this device has a stable spectrum, characterized by uniformly distributed lines.

Laser frequency comb helps to measure the radial velocity of stars as an optical reference. This indicator is important for understanding the speed at which stars approach or move away from us.

The laser frequency comb installed at the La Silla Observatory in Chile calibrates the NIRPS spectrometer to high accuracy. Therefore, the NIRPS alliance will be able to discover the behavior of exoplanets similar to Earth, thus ushering in a new era of space exploration and discovery.

Christopher Bonzon, CSEM Laser Technology Manager, said, "CSEM's laser frequency comb technology is a microcosm of spectral accuracy and stability. The system uses electro-optic modulation to generate equidistant laser lines locked in molecular transitions, with intervals of exactly 15 GHz, far exceeding the scope of competing technologies.".

"The function of frequency combs in the spectral domain is like a ruler, providing a reference for matching data for NIRPS spectrometers over the years."

A high-performance spectrometer for discovering extraterrestrial life
Exoplanets are fascinating and complex, revealing new insights into the origin of planetary systems.
This collaboration represents an important milestone in understanding exoplanets and searching for extraterrestrial life.

Professor Fran ç ois Bouchy, Joint Chief Researcher of the NIRPS Alliance, said, "We are very proud to collaborate with CSEM on this exciting project. Their laser frequency comb technology is crucial for achieving the high performance and long-term reliability required for NIRPS spectrometers.".
We hope to make new discoveries together and contribute to the advancement of exoplanet science.

Source: Laser Net

関連のおすすめ
  • The improvement of additive manufacturing through artificial intelligence, machine learning, and deep learning

    Additive manufacturing (AM) has made it possible to manufacture complex personalized items with minimal material waste, leading to significant changes in the manufacturing industry. However, optimizing and improving additive manufacturing processes remains challenging due to the complexity of design, material selection, and process parameters. This review explores the integration of artificial int...

    02-24
    翻訳を見る
  • Scientists Developing New Low Cost Manufacturing Technologies for High Resolution Optical Components

    Scientists from Leibniz University in Hanover have pioneered the development of a new manufacturing technology - UV LED based microscopy projection lithography. This technology is expected to completely change the manufacturing method of optical components, providing high resolution at lower cost and ease of use. The MPP system utilizes the power of UV LED light sources to transcribe the structura...

    2024-01-06
    翻訳を見る
  • Romania Center launches the world's most powerful laser

    Are you ready? The signal is out! "In the control room of a research center in Romania, engineer Antonio Toma has activated the world's most powerful laser, which is expected to make revolutionary progress in various fields from the health sector to space. The laser located in the center near the Romanian capital Bucharest is operated by the French company Thales and utilizes the invention of Nobe...

    2024-04-01
    翻訳を見る
  • Aspen Laser launches patented four wavelength Ascent laser series in the medical equipment industry

    Recently, Aspen Laser, an emerging global leader in the medical equipment industry, announced that after several months of trial operation, it has officially launched the Ascent laser series and is ready for shipment. It is reported that this new therapeutic laser series, with its outstanding 32 watt combined power and unique patented four wave laser technology in the industry, once again demons...

    2024-08-12
    翻訳を見る
  • The output power of high power femtosecond laser breaking through the key bottleneck of average power can reach the order of 100 watts

    High energy, high average power femtosecond laser due to the attosecond high order harmonic generation, precision processing and manufacturing, biomedical and national defense and other fields of extensive application needs, is the forefront of ultrafast super laser technology research in the past decade.Especially fiber laser due to stable and reliable operation characteristics, compact structure...

    2023-09-04
    翻訳を見る