日本語

Scientists use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage

235
2023-12-07 14:21:14
翻訳を見る

Scientists at the City University of New York use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage. This technology is published in the journal Nature Nanotechnology and allows for encoding multiple bytes of data into the same nitrogen defect at multiple optical frequencies, without confusing the information content.

The common laser based techniques used for engraving/flipping information bits often encounter the so-called diffraction limit, which is the minimum area that the laser beam can focus on. In fact, this is also part of the reason why blue light technology does use blue laser technology: the wavelength of blue light is shorter than that of red light, so more information can be written in the same space. Due to the thinner blue lines, you can print four of them in the same space as the two red lines, automatically increasing the storage density per unit area.

However, what scientists have shown goes far beyond that. They demonstrated how to print in multiple colors within the same nitrogen defect, which means you can build as many bits from atoms as colors you can program separately.

"This means that we can store different information in different atoms of the same microscopic spot by using lasers with slightly different colors, thereby storing many different images in the same position on the diamond," said Tom Delord, a postdoctoral researcher at CCNY and co-author of the study. If this method can be applied to other materials or at room temperature, it may find its own way in computing applications that require high-capacity storage.

Perhaps the best way is to imagine a glass filled with water, where each color channel of the laser will drop a small piece of red, blue, or green ink into the available space. Different colors mean they have different densities, and the contents of green droplets can be separated from those of red droplets. Each color you have increases the amount of information encoded in the system - as long as you can separate different frequencies/densities when you want to read/extract content. Impressively, all these information layers can occupy the same physical space, thereby increasing storage density without interfering with each other.

"What we are doing is using narrowband lasers and low-temperature conditions to precisely control the charge of these color centers," Delord added. This new method enables us to write and read small amounts of data at a finer level than before, accurate to individual atoms.

The researchers demonstrated how their technology can print 12 different images within the same nitrogen defect, achieving a data density of 25GB per square inch. This is approximately equivalent to the 25GB of information that the entire Blu ray disc can hold in a single layer with a diameter of 12 centimeters.

In addition, this technology is non-destructive: information is not carved, but encoded into precisely charged atoms - within precisely defined nitrogen defects within the atoms. This is like lighting up small bubbles in a diamond. Then, information can be extracted from these illuminated bubbles, read, extracted, and re encoded over and over again. Diamonds seem to be eternal.

"By adjusting the beam to a slightly offset wavelength, it can remain in the same physical position but interact with different color centers to selectively change their charge - i.e. write data at sub diffraction resolution," said Monge, a postdoctoral researcher and Dr. CCNY involved in this study.

In theory, the use of diamond storage technology can guide us on a path where diamonds truly become people's best friends: personal treasures passed down from generation to generation, secret information encoded in tiny beams of light. A portable information storage medium used for providing and/or trading information during marriage.

For this technology, this is still a long way off, but the team believes they can eliminate the required low-temperature cooling when operating these color centers. They believe that their technology can one day be implemented at room temperature and can one day increase storage capacity at lower energy costs.

Source: Laser Net

関連のおすすめ
  • High Power Laser Assists Scientists in Discovering a New Stage of High Density and Ultra High Temperature Ice

    As is well known, the outer planets of our solar system, Uranus and Neptune, are gas giants rich in water. The extreme pressure on these planets is 2 million times that of the Earth's atmosphere. Their interiors are also as hot as the surface of the sun. Under these conditions, water exhibits a strange high-density ice phase.Researchers have recently observed one of the stages, called Ice XIX, whi...

    2023-10-11
    翻訳を見る
  • Fundamentals of Next Generation Photonic Semiconductors: Small Lasers

    This week, an illustration was published on the cover of the international journal Science, showcasing a powerful mode-locked laser emitted from a miniature photonic semiconductor.A research team led by Alireza Marandi, a professor of electrical engineering and applied physics at the California Institute of Technology, has successfully developed a conventional mode-locked laser large enough to fit...

    2023-11-13
    翻訳を見る
  • Shanghai Optics and Machinery Institute has made new progress in laser welding of new high-temperature nickel based alloys

    Recently, the research team of Yang Shanglu from the Laser Intelligent Manufacturing Technology R&D Center of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Machinery has made new progress in laser welding of new structural materials for high-temperature molten salts. The research team used a high-power laser for the first time to achieve defect free welding of nick...

    2023-09-01
    翻訳を見る
  • New research on achieving femtosecond laser machining of multi joint micromachines

    The team of Wu Dong, professor of the Micro/Nano Engineering Laboratory of University of Science and Technology of China, proposed a processing strategy of femtosecond laser two in one writing into multiple materials, manufactured a micromechanical joint composed of temperature sensitive hydrogel and metal nanoparticles, and then developed a multi joint humanoid micromachine with multiple deformat...

    2023-09-15
    翻訳を見る
  • New insights into the interaction between femtosecond laser and living tissue

    The N-linear optical microscope has completely changed our ability to observe and understand complex biological processes. However, light can also harm organisms. However, little is known about the mechanisms behind the irreversible disturbances of strong light on cellular processes.To address this gap, the research teams of Hanieh Fattahi and Daniel Wehner from the Max Planck Institute for Photos...

    2024-06-07
    翻訳を見る