日本語

New laser technology unlocks deuterium release in aluminum layers

802
2023-11-25 13:55:47
翻訳を見る

In a recent study, quadrupole mass spectrometry was used to measure the number of deuterium atoms in the aluminum layer.
A recent study led by the National Institute of Laser, Plasma, and Radiation Physics and Sasa Alexandra Yehia Alexe from the University of Bucharest explored the details of laser induced ablation and laser induced desorption techniques using a 1053 nm laser source. The study was published in the Journal of Spectroscopy Part B: Atomic Spectroscopy.

The focus of this study is on the formation of 1 on substrates with different surface characteristics using high-power pulsed magnetron sputtering technology μ M aluminum layer. The key aspect is the software controlled laser pulse energy operation, which can achieve a seamless transition from layer ablation to layer desorption.

The research team evaluated the amount of deuterium released at the end of the laser induction process using quadrupole mass spectrometry. They compared it with the results of thermal desorption spectroscopy, and the results showed that the analyzed sample contained approximately 2.6 ×  ten ²¹  D at/m ²  Deuterium. Mass spectrometry data shows that 85% and 9% are released through LIA and LID, respectively.

The research team can also determine the boundary between ablation and desorption processes by mathematically modeling the data. The analysis of the aluminum layer surface combined with the substrate surface provides important insights into the mechanism of controlling deuterium atom release through these laser-induced processes.

However, the biggest and most important conclusion is that the research team can confirm their findings. By using optical emission spectroscopy, the research team confirmed that the substrate interface had been reached during the LIA-QMS analysis.

From advancing our understanding of materials science to potentially revolutionizing energy applications, these newly launched laser technologies have the potential to manipulate the atomic structure within materials. This has opened up a path for further research and promoted innovation in energy production and material engineering. This study demonstrates the potential of laser technology in manipulating atomic behavior within materials.

Source: Laser Net

関連のおすすめ
  • Renishao provides customized laser ruler solutions for ASML

    Renishao collaborated with ASML to meet a range of strict manufacturing and performance requirements and developed a differential interferometer system for providing direct position feedback in metrology applications. Customized encoder solutions can achieve step wise improvements in speed and throughput.Modern semiconductor technology relies on precise control of various processes used in integra...

    2023-12-14
    翻訳を見る
  • Overview of Ultra Short Pulse Laser Processing of Wide Bandgap Semiconductor Materials

    Professor Zhang Peilei's team from Shanghai University of Engineering and Technology, in collaboration with the research team from Warwick University and Autuch (Shanghai) Laser Technology Co., Ltd., published a review paper titled "A review of ultra shot pulse laser micromachining of wide bandgap semiconductor materials: SiC and GaN" in the international journal Materials Science in Semiconductor...

    2024-07-30
    翻訳を見る
  • Innovative laser technology: a novel quantum cavity model for superradiance emission

    Quantum optics is a complex field where theoretical and experimental physicists collaborate to achieve breakthroughs in explaining subatomic level phenomena.Recently, Farokh Mivehvar from the University of Innsbruck used the most comprehensive model in quantum optics, the Dicke model, to study the interaction between two groups of atoms in a quantized field. This new study makes it possible to obs...

    2024-03-16
    翻訳を見る
  • Researchers develop new techniques for controlling individual qubits using lasers

    Researchers at the University of Waterloo's Institute for Quantum Computing (IQC) have developed a new technique that uses lasers to control individual qubits made from the chemical element barium. The breakthrough is a key step toward realizing the capabilities of quantum computers.The new technique uses thin glass waveguides to segment and focus laser beams with unprecedented precision. Each foc...

    2023-09-12
    翻訳を見る
  • Progress made in the research and development of high-performance electrically pumped topology lasers by the Institute of Semiconductors, Chinese Academy of Sciences

    Topological laser (TL) is a laser device designed and manufactured using the principles of topological optics, which can produce a robust single-mode laser and is an ideal light source for future new optoelectronic integrated chips. Electrically pumped topology lasers have become a research hotspot due to their small size and ease of integration, but topology lasers based on electrical injection a...

    2024-06-06
    翻訳を見る