日本語

Narrow band tunable terahertz lasers may change material research and technology

425
2023-11-21 14:07:11
翻訳を見る

A group of researchers from the Max Planck Institute for Material Structure and Dynamics in Germany explored the effect of manipulating the properties of quantum materials far from equilibrium through customized laser drivers. They found a more effective method to create previously observed metastable superconducting states in fullerene based materials using lasers.

By tuning the light source to 10 THz, a lower frequency than before, the team reconstructed a long-lived superconducting state in fullerene based materials while reducing the pulse intensity by 100 times. Although researchers attempted to directly observe this photo induced state at room temperature for 100 picoseconds, they predicted its lifespan to be at least 0.5 nanoseconds.

For many years, we have been interested in the nonlinear response of materials, especially how molecular or phonon modes in solids are driven to large amplitudes, "said Andrea Cavalleri, founding director of the Max Planck Institute for Material Structure and Dynamics, a professor of physics at the University of Hamburg and the University of Niujin. Many new phenomena have occurred in this state, one of which is the amplification of electronic properties such as superconductivity.

The research results of this group will help reveal more details about the potential microscopic mechanisms of photo induced superconductivity. The determination of resonance frequency will enable theorists to understand which excitation is important, as there is no widely accepted theoretical explanation for this effect in K3C60, "said Edward Rowe, a doctoral student who collaborated with Cavalleri.

A light source with a higher repetition rate at a frequency of 10 THz may help maintain metastability for a longer period of time. If we can transmit each new pulse before the sample returns to a non superconducting equilibrium state, it is possible to maintain the superconducting state continuously, "Rowe said.

Amplification of superconductivity
The work of this group is based on the excitation of lattice vibrations, which are then coupled to the electronic degrees of freedom of the system through electron phonon coupling.

Although microphysics is far from clear, the coherent modulation of these modes seems to be able to 'cool' the fluctuations within superconducting electrons, reduce decoherence, and stabilize superconductivity at temperatures that cannot be achieved in non driving or equilibrium systems, "Cavalleri said.

A new type of physical phenomenon is waiting for research and development - it is related to the function of materials controlled by light. The bottleneck at this stage is the availability and complexity of mid infrared and terahertz light sources, most of which are broadband single cycle light sources, "Cavalleri explained. Narrowband tunable lasers and amplifiers that can cover the spectral region of 1 to 20 THz will have a revolutionary impact on material research and technology.

The results of this group were obtained after ten years of research, and their progress was the systematic characterization of material response pump frequency. But increasing efficiency by 100 times is a remarkable and unexpected result, and it is very beneficial, "Cavalleri said.

Along the way, we encountered some challenges. Cavalleri added, "The design of optical parametric amplifiers, their operation under stable conditions, and the preparation of K3C60 samples are all very challenging.

Future high-speed equipment?
Although it is still too early to know exactly what types of applications the team's work will achieve, "if these materials can be designed to the same standards as superconducting platforms used for magnetic manipulation and sensing or electrical transmission, and if terahertz lasers are more widely used outside complex laboratory environments, we can envision applications in high-speed equipment," Cavalieri said.

What is the next step for the team? We are currently developing a platform to study the magnetic and electrical responses of these materials and are interested in exploring the effects of laser driven quantum tunneling, "Cavalleri said.

Source: Laser Network

関連のおすすめ
  • Photovoltaic converters for power transmission systems

    Scientists from the University of Hahn in Spain and the University of Santiago de Compostela conducted research to determine the most suitable semiconductor materials for high-power light transmission in terrestrial and underwater environments.HPOT, also known as laser power transfer, is a method of transmitting continuous power to a remote system using a monochromatic light source through an opti...

    2023-12-29
    翻訳を見る
  • Coherent Company Launches Industry's First 1200 mW Pumped Laser Module for Optical Amplification in DWDM Networks

    Coherent Corporation, the leader in erbium-doped fiber amplifier pumped laser technology for deployment in optical networks, announced today the launch of the industry's first pumped laser module in a 10 pin butterfly package with an output power of 1200 mW.The rapid development of optical communication technology is reaching the theoretical limit of fiber capacity and driving the expansion of tr...

    2023-09-22
    翻訳を見る
  • MIT researchers have demonstrated a novel chip based resin 3D printer

    Researchers from the Massachusetts Institute of Technology and the University of Texas at Austin showcased the first chip based resin 3D printer. Their concept verification tool consists of a millimeter sized photon chip that emits a programmable beam of light into resin holes, which solidify into a solid structure when exposed to light.The prototype processor does not have mobile components, but ...

    2024-06-17
    翻訳を見る
  • Shanghai Institute of Optics and Mechanics has made progress in studying the structure and properties of aluminum phosphate glass

    Recently, Hu Lili, a research team of the High Power Laser Unit Technology Laboratory of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics, used a method combining experiment, molecular dynamics simulation and quantitative structure property relationship analysis (QSPR) to study aluminum phosphate glass, and the related research results were published in the Journal o...

    2023-09-15
    翻訳を見る
  • Launching the world's strongest laser at a cost of 320 million euros

    Beijing, April 1st (Reporter Liu Xia) - The world's most powerful laser has been activated recently. On March 31st, the Physicist Organization Network reported that the system can enable laser pulses to reach a peak of 10 terawatts (1 terawatt=100 terawatts=1015 watts) within 1 femtosecond (1000 trillions of a second), which is expected to promote revolutionary progress in multiple fi...

    2024-04-03
    翻訳を見る