日本語

Researchers successfully 3D printed polymer based robotic arms through laser scanning

797
2023-11-16 15:29:51
翻訳を見る

Researchers from the Federal Institute of Technology in Zurich and an American startup used slow curing plastic to develop durable and sturdy robots using high-quality materials.

The team can now print these complex robots at once and combine soft, elastic, and rigid materials together. This allows for the creation of precision structures and parts with cavities as needed.

Inkbit, a derivative company of the Massachusetts Institute of Technology, has developed a new printing technology. Researchers at the Federal Institute of Technology in Zurich have developed several robot applications and helped optimize the technology used for slow curing polymers. The researchers jointly published their research findings in the journal Nature.

Using this new technology, researchers have successfully printed a robotic hand made of bones, ligaments, and tendons made of different polymers in one go for the first time.

So far, we are unable to manufacture this hand using the fast curing polyacrylate we use in 3D printing, "said Thomas Buchner, a doctoral student in the robotics professor Robert Katzschmann group at the Federal Institute of Technology in Zurich, who was the first author of the study. We are currently using slowly curing thiophene polymers. They have excellent elasticity and recover to their original state faster than polyacrylates after bending.

Researchers say their method makes thiophene polymers an ideal choice for producing elastic ligaments in robotic arms. They can also fine tune the stiffness of thiol groups to meet the requirements of soft robots.

Robots made of soft materials, such as the hands we have developed, have advantages over traditional metal robots. Because they are very soft, there is a lower risk of injury when working with humans, and they are more suitable for handling fragile goods, "Katzschmann said.

In order to adapt to slowly curing polymers, researchers further developed 3D printing by adding a 3D laser scanner. The scanner will immediately check each printing layer for any surface irregularities. This technology is not a smooth and uneven layer, but rather considers unevenness when printing the next layer.

The feedback mechanism compensates for these irregularities in the next layer in real-time and accurately by calculating any necessary adjustments to the amount of material to be printed, "said Professor Wojciech Matusik of the Massachusetts Institute of Technology.

Source: Laser Network

関連のおすすめ
  • What is field assisted additive manufacturing?

    Dr. Tan Chaolin from the Singapore Institute of Manufacturing Technology, in collaboration with China University of Petroleum, Shanghai Jiao Tong University, Princeton University, University of Malta, Huazhong University of Science and Technology (Professor Zhang Haiou), University of California, Irvine, Hunan University, and EPM Consulting, published an article titled "Review on Field Assisted Me...

    2024-07-29
    翻訳を見る
  • The world's most powerful laser attempts to unravel the secrets of the universe

    They are the strongest lasers in history, and their beams are helping scientists explore the structure of the universe.In a research laboratory at the University of Michigan, bright green light fills the vacuum chamber of a technology giant. It is the size of two tennis courts. The walls are shielded with 60 centimeters of concrete to prevent radiation leakage, and workers wear masks and hairnets ...

    2023-11-28
    翻訳を見る
  • Shanghai Institute of Optics and Fine Mechanics has achieved beam splitting vortex control and interference detection for the first time in the 46.9nm wavelength band

    Recently, Associate Researcher Zhang Junyong from the High Power Laser Physics Joint Laboratory of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, together with Professor Zhao Yongpeng's research group from Harbin Institute of Technology and Professor Zhan Qiwen's research group from Shanghai University of Technology, completed the experimental verification of 46....

    2024-10-17
    翻訳を見る
  • The Danish authorities have approved the sale of this laser manufacturer to Hamamatsu, Japan

    On May 6, 2024 local time, the Danish Business Administration (DBA) approved the sale of NKT Photonics to Photonics Management Europe S.R.L, a wholly-owned subsidiary of Hamamatsu Photonics K.K.On that day, Hamamatsu Photonics received a notice from the Danish Business Administration stating that the acquisition had been approved:(Source: The Danish Business Authority)NKT Photonics stated that the...

    2024-05-09
    翻訳を見る
  • Shanghai Institute of Optics and Mechanics proposes a new solution for quartz glass as a visible light laser material

    Recently, Hu Lili, a research group of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new scheme based on rare earth ions Dy3+doped quartz glass as a yellow laser material, and the relevant research results were published in the Journal of the American Ceramic Society as "Effect o...

    2024-06-05
    翻訳を見る