日本語

The official launch of FV4000 and FV4000MPE microscopes aims to redefine scientific imaging

825
2023-11-03 14:24:48
翻訳を見る

Introduction to FLUOVIEW ™ The FV4000 confocal laser scanning microscope and FV4000MPE multiphoton laser scanning microscope have made breakthroughs in imaging technology, enabling researchers to make new scientific discoveries. The FV4000 and FV4000MPE microscopes aim to redefine scientific imaging, providing higher accuracy, lower noise, and higher sensitivity, setting new standards for image acquisition and data reliability.

The core of two new FLUOVIEW systems is Evident's revolutionary SilVIR ™ Detectors, a next-generation technology that enables researchers to obtain quantitative image data. With its silicon photomultiplier tube (SiPM) and patented digital signal processing technology, the SilVIR detector can provide excellent noise reduction and enhanced photon detection efficiency over a wider wavelength range, providing clearer and more accurate imaging results and quantitative image intensity data.

Excellent imaging quality and accuracy. The FV4000 and FV4000MPE microscopes use SilVIR detectors, perfectly combining sensitivity and accuracy, allowing researchers to obtain high-quality images that surpass previous generation laser scanning systems, even from weak fluorescence signals. This progress helps to ensure that images remain clear and have extremely low noise, enabling accurate quantification of fluorescence intensity to obtain more reliable data.

The updated TruSpectral technology of the system is combined with high sensitivity SilVIR detectors, allowing you to see more. Compared with traditional photomultiplier tube (PMT) detector technology, the signal-to-noise ratio and dynamic range have been improved by using SilVIR detector. The system changes the dynamic range of game rules, allowing researchers to capture images that shrink from macroscopic to subcellular structures without compromise.

The innovative near-infrared capability, with its expanded spectral range and improved multiplexing capability, enables the FV4000 system to detect industry-leading wavelengths ranging from 400 nm to 900 nm with a minimum step size of 1 nm.

The optical design of the FV4000 is optimized for near-infrared (NIR) imaging, featuring high transmittance optical elements from 400 nm to 1300 nm, modular laser combiners supporting up to 10 laser lines from 405 nm to 785 nm, and the award-winning X Line ™ Goal.

The advancement driven by artificial intelligence enhances your imaging experience with AI driven tools that reduce noise, simplify image analysis, and improve delayed imaging. TruAI noise reduction and image segmentation technology can optimize image quality and simplify data extraction, saving researchers valuable time and effort.

The improved modularity and flexibility are the same as the previous generation products, and our FLUOVIEW system is designed with flexibility and configuration suitable for your specific application. With FV4000, you can now add multi photon imaging functionality, allowing you to use the same system for two imaging modes.

Experience the revolutionary features of FLUOVIEW FV4000 and FV4000MPE microscopes, providing higher accuracy, sensitivity, and data reliability for your imaging experiments.

Source: Laser Network

関連のおすすめ
  • Laser chip manufacturer Shijia Photon will make a profit of 65 million yuan in 2024

    Shijia Photon disclosed its 2024 annual performance forecast on the evening of January 17th, expecting to achieve a revenue of 1.074 billion yuan in 2024, a year-on-year increase of 42.36%; Net profit attributable to the parent company was 65 million yuan, with a loss of 47.55 million yuan in the same period last year; Deducting non net profit is expected to be 48.1 million yuan, with a loss of 66...

    01-21
    翻訳を見る
  • The United States has successfully developed a full 3D printed electric spray engine

    The fully 3D printed electric spray engine is suitable for small satellite in orbit maneuver, and its production cost is only a small part of that of traditional thrusters.Image source: Massachusetts Institute of Technology, USAThe Massachusetts Institute of Technology team recently demonstrated an electric spray engine made entirely of 3D printing technology, which can be propelled by emitting ...

    02-20
    翻訳を見る
  • Medium-long wavelength infrared quantum cascade laser of MOCVD on silicon

    Us researchers report 8.1 μm wavelength quantum cascade laser (QCL) grown on silicon (Si) by MOCVD [S. Xu et al., Applications. Physics Letters, v123, p031110, 2023]. "There are no previous reports of QCL growth on silicon substrates by metal-organic chemical vapor deposition (MOCVD)," commented the team from the University of Wisconsin-Madison, the University of Illinois at Urbana-Champaign an...

    2023-08-04
    翻訳を見る
  • Low noise! Switzerland develops a new type of laser

    According to foreign media reports, scientists from the Physics Research Institute and the Institute of Physics and the Center for Quantum Science and Engineering at the Swiss Federal Institute of Technology Lausanne (EPFL) in Lausanne, Switzerland have made a new progress in the field of excitation science, developing a smaller and quieter laser system than previous products.Small laser system (I...

    2024-07-03
    翻訳を見る
  • Focusing on Lithuanian solid-state and fiber laser manufacturer EKSPLA

    In this interview, Dr. Antonio Castelo, EPIC Biomedical and Laser Technology Manager, had a conversation with Aldas Juronis, CEO of EKSPLA, a Lithuanian innovative solid-state and fiber laser manufacturer.What is the background of your appointment as the CEO of EKSPLA?In 1994, I graduated from Kaonas University of Technology in Lithuania with a Bachelor's degree in Radio Electronic Engineering. At...

    2023-11-07
    翻訳を見る