日本語

Iron Triangle releases fiber Bragg gratings and arrays based on multi-core fibers

726
2023-10-28 11:10:28
翻訳を見る

T35 multi-core fiber grating and T103 multi-core fiber grating arrays can be engraved into all fiber cores in physical locations, or only onto certain fiber cores.
They can also have the same wavelength, or they can have all different wavelengths at the same physical location along the fiber or at different physical locations along the fiber.


T35 and T103 are very suitable for projects that require monitoring of strain and/or temperature at many points along the MCF fiber optic.
Provide inherent advantages of FBG based sensors. Not affected by electromagnetic interference.
The standard uses acrylic coated fibers, which can be used for OEM packaging according to requirements.
With the expansion of optical sensing applications in industries that require high data output and precision while maintaining cost-effectiveness, the demand for special fiber Bragg grating sensors is growing.
The unique 3D sensing capabilities of T35 and T103 provide new measurement capabilities for developers of global optical sensing solutions.
TECHNICA optical components are a leading developer, manufacturer, and global supplier of high-quality fiber Bragg gratings, FBG arrays, FBG sensors, and optical sensing instruments required for monitoring them.
The headquarters of Iron Triangle is located in Atlanta, USA.
TECHNICASA is a registered trademark of TECHNICA optical components.


Source: Laser Network

関連のおすすめ
  • Cambridge scientists have achieved the long-sought quantum state stability in new 2D materials

    Scientists at the Cavendish laboratory have discovered the spin coherence of hexagonal boron nitride (hBN) under normal conditions, providing new prospects for the application of quantum technology.Researchers at Cavendish Laboratory have found that a single "atomic defect" in a material called hexagonal boron nitride (hBN) maintains spin coherence at room temperature and can be manipulated using ...

    2024-05-27
    翻訳を見る
  • Zhuoli Laser South Korea Branch Officially Opened

    In recent years, the performance of Chinese laser technology enterprises in the international market has become increasingly eye-catching. On September 20th, under the joint witness of nearly a hundred customer representatives from various industries in South Korea, the opening ceremony of Zhuolai Laser South Korea Branch was officially held.The branch is located in the Gyeonggi do region of south...

    2023-09-23
    翻訳を見る
  • Diffractive optical elements: the behind the scenes hero of structured light laser technology

    In today's rapidly developing technological era, structured light laser technology has become an important tool in the fields of 3D measurement and image capture. The core of this technology lies in a magical device called Diffractive Optical Elements (DOE), which can precisely control and shape laser beams, creating various complex light patterns. But what exactly is DOE? How does it work? Let Ho...

    2024-04-10
    翻訳を見る
  • Research has shown that patterns on crystals can double the optical sensitivity of photodetectors

    Scientists from the Institute of Automation and Control Process at the Far East Branch of the Russian Academy of Sciences described the changes on the surface of monocrystalline silicon during laser processing. The author of this study placed the crystal in a methanol solution and applied a laser pulse lasting one thousandth of a second to the sample, with a pulse count ranging from five to fifty ...

    2024-04-01
    翻訳を見る
  • MIT research enables 3D printers to recognize new materials

    According to scientists at MIT, mathematical formulas developed by MIT researchers and other institutions can significantly improve the sustainability of 3D printing.Issues with 3D printing of plastics3D printers typically use mass-produced polymer powders to print parts, which are consistent and predictable, but also difficult to recycle.Other more environmentally friendly options also exist and ...

    2024-04-18
    翻訳を見る