日本語

Iron Triangle releases fiber Bragg gratings and arrays based on multi-core fibers

204
2023-10-28 11:10:28
翻訳を見る

T35 multi-core fiber grating and T103 multi-core fiber grating arrays can be engraved into all fiber cores in physical locations, or only onto certain fiber cores.
They can also have the same wavelength, or they can have all different wavelengths at the same physical location along the fiber or at different physical locations along the fiber.


T35 and T103 are very suitable for projects that require monitoring of strain and/or temperature at many points along the MCF fiber optic.
Provide inherent advantages of FBG based sensors. Not affected by electromagnetic interference.
The standard uses acrylic coated fibers, which can be used for OEM packaging according to requirements.
With the expansion of optical sensing applications in industries that require high data output and precision while maintaining cost-effectiveness, the demand for special fiber Bragg grating sensors is growing.
The unique 3D sensing capabilities of T35 and T103 provide new measurement capabilities for developers of global optical sensing solutions.
TECHNICA optical components are a leading developer, manufacturer, and global supplier of high-quality fiber Bragg gratings, FBG arrays, FBG sensors, and optical sensing instruments required for monitoring them.
The headquarters of Iron Triangle is located in Atlanta, USA.
TECHNICASA is a registered trademark of TECHNICA optical components.


Source: Laser Network

関連のおすすめ
  • Top management changes at Laser Photonics Corp., a US laser equipment manufacturer

    Recently, Laser Photonics Corp. (LPC), a Nasdaq listed equipment developer, announced that it has appointed John T. Armstrong as its new Executive Vice President. Before assuming his position at LPC, Armstrong served as Vice President of Astronics Test Systems, a subsidiary of Astronics Corporation, a global leader in advanced technology and products in critical mission areas such as aerospace a...

    2024-11-20
    翻訳を見る
  • The "white" laser device from startup Superlight Photonics will completely transform imaging

    Superlight Photonics, a start-up company headquartered in Enshurd, has developed a broadband laser chip that can replace the bulky and power consuming technology currently used in advanced imaging and metering equipment.This idea suddenly appeared in his mind, while moving his other belongings from Germany to his new home in Enschede. During his doctoral research at the Max Planck Institute of Mul...

    2023-10-28
    翻訳を見る
  • Deep Photon Network Platform, Empowering Any Functional Photon Integrated Circuit

    The widespread application in the fields of optical communication, computing, and sensing continues to drive the growing demand for high-performance integrated photonic components. Recently, Ali Najjar Amiri of Kochi University in Türkiye and other scholars proposed a highly scalable and highly flexible deep photonic network platform, which is used to realize optical systems on chip with arbi...

    2024-03-11
    翻訳を見る
  • AM Research has released its latest quarterly data and forecast report

    Recently, additive manufacturing research company AM Research released its latest quarterly data and forecast report, which deeply analyzes the latest developments in the global 3D printing market, covering multidimensional analysis of suppliers, printing technology, geographic location, and application areas.According to the report, the global 3D printing market once again demonstrates strong gro...

    2024-09-29
    翻訳を見る
  • Breakthrough! Extending the lifespan of solar panels to 50 years using lasers

    Recently, the National Renewable Energy Laboratory (NREL) under the US Department of Energy has made a revolutionary breakthrough by developing a concept validation method aimed at completely removing polymers from solar panel manufacturing, thereby achieving more efficient and environmentally friendly recycling.Solar panels have always been praised for their recyclability. However, the thin plast...

    2024-04-30
    翻訳を見る