日本語

Aalyria plans to establish a laser link mesh network to quickly transmit data on land, in the air, in the ocean, and in space

198
2023-10-26 16:20:40
翻訳を見る

Aalyria is establishing a laser link mesh network to quickly transmit data on land, in the air, in the ocean, and in space. The maritime part of the plan is about to be pushed forward.

Recently, this DC based laser communication network company announced the signing of a memorandum of understanding with HICO Investment Group, which focuses on investing in shipping and logistics companies. According to the agreement, Aalyria will deploy up to 200 Tightbeam laser terminals on ships in the Middle East, Asia, Europe, Africa, and the Caribbean.

Good grid division: Aalyria stood out from stealth last year, obtained a large number of IPs from Alphabet, and plans to completely change connectivity. The company has two products:
Tightbeam is a laser terminal that can simultaneously transmit speeds of 100 Gbps per wavelength in both directions. This terminal can be connected to ground, sea, air, and space platforms.

Spacetime is a network orchestration software that can draw the most effective route for a segment of data on a large network. The company has signed a contract with Rivada Space Networks to coordinate communication for its planned 600 bird constellations.

Aalyria's laser communication method can eliminate the need to lay miles of fiber optic cables or connect to pure satellite networks for fast connectivity.

It's a bit like going from copper to fiber optic, going back to the past, "Aalyria CEO Chris Taylor told Payload. This is a very big turning point in connectivity.

Contract: According to this memorandum of understanding, Aalyria will collaborate with HICO to deploy its second-generation universal joint laser terminals on up to 200 ships in multiple regions. This is the first commercial agreement signed by the company to deploy terminals on board ships.

Source: Laser Network

関連のおすすめ
  • Progress made by the Precision Measurement Institute in Thorium Ion Trapping Research

    Recently, the Cold Molecular Ion Research Group of the Institute of Precision Measurement has made significant progress in the loading, trapping, and recognition of thorium ions. The related research results have been published as cover and selected articles in the international physics journal Journal of Applied Physics, titled "Loading and identifying variable charged thorium ions in a linear io...

    2024-06-21
    翻訳を見る
  • IPG introduces a new dual-beam laser with the highest single-mode core power

    From September 12 to 14, 2023, IPG Photonics, a well-known fiber laser technology leader in the United States, will showcase its latest innovative laser solutions at the Battery Show in Michigan, USA. IPG will also showcase industry-leading fiber laser sources and automated laser systems for electric vehicle battery welding applications.New laser technology pushes the limits of battery welding spe...

    2023-09-14
    翻訳を見る
  • Significant breakthrough in intelligent spectral environment perception research at Xi'an Institute of Optics and Fine Mechanics

    Recently, the Xi'an Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made significant progress in the field of intelligent spectral environmental perception. Relevant research results have been published in the top journal in the field of environmental science, Environmental Science&Technology (Nature Index, 5-Year IF: 11.7), and have been selected as cover papers....

    03-20
    翻訳を見る
  • The scientific research team of Shenzhen University of Technology has discovered a new mechanism of attosecond pulse coherent radiation

    Recently, a team of Professor Ruan Shuangchen and Professor Zhou Cangtao from Shenzhen University of Technology proposed for the first time internationally a physical solution based on the generation of attosecond pulses and subperiodic coherent light shock radiation from a superluminal plasma wake field, and explained a new coherent radiation generation mechanism dominated by collective electron ...

    2023-10-14
    翻訳を見る
  • Laser beam combined with metal foam to produce the brightest X-ray

    According to the Physicists' Network, scientists from Lawrence Livermore National Laboratory (LLNL) in the United States ingeniously combined the high-power laser emitted by the National Ignition Facility (NIF) with the ultra light metal foam to create the brightest X-ray ever. These ultra bright high-energy X-rays play an important role in many research fields, including imaging of extremely dens...

    01-18
    翻訳を見る