日本語

The Welding Application of Fiber Laser in the Food and Beverage Industry

578
2023-10-19 12:00:28
翻訳を見る

As is well known, food and beverage product manufacturers have strict requirements in ensuring the hygiene and cleanliness of their equipment. Once these devices and components are designed or manufactured improperly, they are likely to cause pollution, ultimately leading to health hazards, brand reputation damage, and expensive recall actions. The shortage of labor and raw materials further exacerbates these challenges, putting additional pressure on manufacturers to maintain competitiveness.

To maintain a leading position in these challenges, manufacturers need flexible manufacturing technologies that are easy to use, fast, capable of eliminating waste and rework, and producing equipment with excellent craftsmanship. Laser welding provides excellent processes that enable smooth surface treatment, faster processes, and eliminate potential bacterial contamination traps, making it expected to play a crucial role in the food and beverage industry. Materials and Connection Technologies in the Food and Beverage Industry.

The materials used in equipment often affect manufacturing. Stainless steel, especially grades 304 and 316, is the preferred material for food grade applications due to its cleanliness, corrosion resistance, and ease of disinfection. This type of steel has a high level of durability and wear resistance, and its presence is often found in food preparation, processing, brewing and distillation, catering, and restaurants. Fasteners such as bolts and rivets need to consider the joint structure and direction related to the food contact area. And this may impose limitations on the design and increase the cost of component manufacturing.

Fortunately, handheld laser welding technology has achieved a higher level of design flexibility, reducing the number of parts by eliminating nuts, bolts, and washers, and simplifying machining components by eliminating threaded holes. Due to its ease of use, versatility, and technological capabilities, this technology provides many opportunities for improvement for food and beverage manufacturers in the food and beverage industry.

Handheld laser welding can enable equipment designers to operate not only on food contact surfaces, but also on all surfaces of the equipment (such as welding closed frame pipes), bringing good results to improve cleaning efficiency.

Compared with MIG and TIG welding, the heat input is significantly reduced, and designers have more manufacturing options when using thinner materials, such as reducing raw material costs and related transportation costs in non load-bearing structures.

Handheld laser system for distortionless welding of mixed materials
In addition, the efficiency of laser welding manufacturing can also be improved, thereby increasing profits. Traditional technologies such as MIG and TIG welding require muscle memory and motor skills. A skilled welder may take several years to develop the required level of professional knowledge to enable the manufacturer's products to stand out in competition by producing high-quality welding. Laser welding can enable a worker with only basic dexterity or no welding experience to learn how to produce high-quality and consistent welds in a short amount of time.

High quality welding and easier post-processing
In addition, post-processing of welds, such as grinding and medium blasting, increases costs through equipment and additional labor. The low-cost and easy-to-use welding solution available breaks down the barriers to obtaining professional and skilled labor. Laser welding is also faster than traditional methods, four times faster than TIG welding.

The challenge of using traditional welding methods to achieve high-quality surface treatment for food grade processes is very significant. Laser welding capability - such as swing welding, which can quickly scan the entire welding path of the laser beam, minimize splashing, and enable imperfect parts to be welded, reducing the need for manual post-processing and improving product quality.

In addition, using a laser can use a wire feeder to fill materials where necessary. When combined with swing welding, it is easy to create superior joints, and in many cases, post-processing grinding may not be necessary.

Another key issue is the possibility of microcracks, which may occur on thinner joints when using traditional welding. This can avoid the low heat input and stable welding pool swing ability due to laser welding.

Before welding, debris on the surface of the part may produce inclusions and other defects. Currently, many handheld laser systems also offer laser cleaning capabilities, which can remove pre and post weld smoke and dust, as well as remove discoloration in heat affected areas and allow surface passivation.

Compared to resistance spot welding, laser spot welding is non-contact and precise, completely eliminating tip pressure and alignment issues, resulting in higher quality products and preventing problems such as indentation and asymmetric welds, which can lead to bacterial growth and visually inferior products, respectively.

In addition, laser spot welding only requires contact with one side of the part, providing more design flexibility. Compared to TIG welding, thin parts can be spot welded at significantly higher rates with minimal heat input.

Meeting the hygiene and cleanliness requirements of the food and beverage industry is a complex task. Handheld laser welding and cleaning technologies (such as IPG's LightWeld system) have significant advantages in food grade welding, providing flexibility in equipment design, improving productivity, reducing costs, and improving quality. By adopting this technology, manufacturers can improve food safety, simplify production processes, and ensure customer satisfaction.

Compared to traditional welding methods, handheld laser welding and cleaning have many advantages, which can help improve welding quality and consistency, while reducing production time and costs.

Source: OFweek

関連のおすすめ
  • Lameditech of South Korea was listed on the KOSDAQ exchange on the 17th

    On June 11, 2024, Korean laser medical equipment manufacturer Lameditech successfully completed its initial public offering and was listed on the KOSDAQ exchange on the 17th.Last month, its public offering price was fixed at 16000 Korean won. In this public offering, Lameditech issued a total of 1298000 shares, raising approximately 20.8 billion Korean won. Since Lameditech's debut on KOSDAQ, as o...

    2024-06-26
    翻訳を見る
  • Trumpf and SiMa. ai collaboration to develop AI laser

    Recently, Trumpf Group, a leading global provider of machine tools and laser technology solutions, announced that it has partnered with software company SiMa AI has signed a partnership agreement to develop lasers with artificial intelligence (AI).It is reported that SiMa. ai is a software centric embedded edge machine learning chip system company, and the goal of both parties is to equip Trumpf'...

    2024-07-19
    翻訳を見る
  • Trumpf 3D printing technology innovation: zero support structure, low waste, unlimited possibilities

    Ditzingen, Germany, September 8, 2023) - TRUMPF, the world's leading provider of machine tools and laser technology solutions, has improved its 3D printing software TruTops Print to print parts with suspension angles as low as 15 degrees with little need for support structures. Trumpf will present its new technology at the European International Machine Tool Show (EMO 2023) in Hannover, Germany.Fi...

    2023-09-13
    翻訳を見る
  • Advanced OPA enhances the energy of attosecond imaging ultra short pulses

    The attosecond level ultra short laser pulse provides a powerful method for detecting and imaging ultra short processes, such as the motion of electrons in atoms and molecules.Although ultra short laser pulses can be generated, generating ultra short and high-energy pulses is a continuous challenge. In order to expand the photon energy, photon flux, and continuous bandwidth of isolated attosecond ...

    2024-05-11
    翻訳を見る
  • The research team establishes synthetic dimensional dynamics to manipulate light

    In the field of physics, the synthetic dimension has become one of the forefront of active research, providing a way to explore phenomena in high-dimensional space, surpassing our traditional 3D geometric space. This concept has attracted great attention, especially in the field of topological photonics, as it has the potential to unlock rich physics that traditional dimensions cannot reach.Resear...

    2024-03-20
    翻訳を見る