日本語

NSF funding for collaboration between researchers from Syracuse University and Cosmic Explorer

428
2023-10-13 14:58:45
翻訳を見る

Billions of years ago, in a distant galaxy, two black holes collided, triggering one of the most extreme cosmic events in the universe. The power of this phenomenon is so great that it distorts the structure of spacetime, emitting ripples called gravitational waves.

These waves will eventually be detected on Earth by the Advanced Laser Interferometer Gravity Wave Observatory (LIGO) detector, and teachers from Syracuse University played a leading role in this major discovery. Although members of the university's gravitational wave group spent some time celebrating this incredible feat, they immediately began to think about how to build a new observatory that would enable them to explore more regions of the universe using gravitational waves.

The Space Explorer is the next generation gravitational wave observatory designed by the Center for Gravitational Wave Astronomy and Astrophysics (CGWAA) at Syracuse University. CGWAA was established this autumn as a center for university students and teachers, playing a major role in the design and operation of the Gravity Wave Observatory. The CGWAA team collaborated with scientists from Massachusetts Institute of Technology, Pennsylvania State University, California State University at Fullerton, and the University of Florida, hoping that the Space Explorer could begin exploring the universe in the mid-1930s.

In order to properly view the functionality of Cosmic Explorer, Advanced LIGO has detected approximately 100 black hole collisions since 2015, while Cosmic Explorer will be able to detect every collision in the visible universe - approximately 100000 times a year, or every five minutes. Space explorers will also see about one million neutron stars merging each year, enabling scientists to understand the properties of nuclear matter and the production of heavy elements.

Gravity wave detectors, such as the Space Explorer, are large interferometers. Interferometry is an extremely sensitive measurement technique that uses mirrors, laser beams, and interference (the addition or removal of combined beams) to measure the displacement of mirrors caused by gravitational wave patterns. Advanced detectors help researchers map black holes in the universe, which was previously impossible to achieve with telescopes because unlike stars, black holes do not produce light.

In October 2022, Cosmic Explorer project partners gathered at the Minnobrook Convention Center at Syracuse University to hold a proposal writing seminar, which received over $9 million in federal funding for the project. As part of the NSF commitment, Syracuse University will receive funding of $1.64 million over the next three years.

Recently, researchers from the School of Arts and Sciences who received funding for the Cosmic Explorer project include Stefan Ballmer, a professor of physics and founding director of CGWAA; Georgia Mansell, Assistant Professor of Physics; Craig Cahillane, Professor of Physics Research; Professor Josh Russell and Professor Christopher Scholz from the Department of Earth and Environmental Sciences, whose funding will involve the site evaluation of the proposed observatory.

Without the support of the National Science Foundation, this important task would not have been possible, "Ballmer said. When we established the Center for Gravitational Wave Astronomy and Astrophysics, our idea was to strengthen Syracuse University's position as a pioneer in the field of gravitational wave detection. The awards presented by NSF confirm this commitment and will make the center a key participant in promoting the success of the Space Explorer project.

Source: Laser Network

関連のおすすめ
  • Chuangxin Laser Industry Dedicated Laser and Solutions Help Promote the Intelligent Development of Cladding Application Industry

    Laser cladding technology, also known as laser additive manufacturing technology, uses high-energy laser as the heat source and metal alloy powder as the cladding material. Through the synchronous action of laser and alloy powder on the metal surface, it quickly melts to form a molten pool, and rapidly solidifies to form a dense, uniform, and controllable thickness metallurgical bonding layer, the...

    2023-11-01
    翻訳を見る
  • The Science Island team has made breakthroughs in high pulse energy mid infrared fiber transmission

    Recently, the Jiang Haihe Research Group of the Health Institute of the Chinese Academy of Sciences Hefei Institute of Materia Medica made important progress in the research of the high-energy pulsed laser transmission system in the mid infrared band, and designed a 78 μ The 6-hole microstructure anti resonant hollow core fiber (AR-HCF) with a larger core diameter achieved efficient transmissio...

    2024-03-23
    翻訳を見る
  • Chip guided beam for new portable 3D printers

    Imagine being able to carry a 3D printer with you and quickly create low-cost objects, such as fastening bicycle wheels or parts needed for critical medical surgeries. Scientists from the Massachusetts Institute of Technology (MIT) and the University of Texas at Austin have combined silicon photonics and photochemical technology to successfully develop the first chip based 3D printer, taking a cru...

    2024-06-18
    翻訳を見る
  • High Resolution Visible Light Imaging of Large Aperture Telescopes

    The deformable mirror used in adaptive optics can instantly correct the static wavefront aberrations and atmospheric turbulence wavefront disturbances of the optical system by changing its surface. This enables the optical system to automatically adapt to changes in the environment and maintain optimal performance. It is widely used in high-resolution astronomical observations, laser atmospheric t...

    2023-10-31
    翻訳を見る
  • IPG launches dual beam fiber laser for additive manufacturing applications

    Recently, American fiber laser giant IPG Photonics announced the launch of a new laser series specifically designed for the additive manufacturing field.The highlight of this series of lasers lies in its integration of IPG's unique dual beam technology, which can independently regulate and simultaneously emit core and ring beams, setting a new benchmark in accuracy, efficiency, and reliability.Ba...

    2024-11-25
    翻訳を見る