日本語

Laser Photonics cleaning technology simplifies the removal of biofilms in industrial environments

178
2023-09-20 14:41:43
翻訳を見る

Laser Photonics Corporation is a leading global industrial developer of CleanTech laser systems for laser cleaning and other material applications, highlighting a key application of its CleanTech laser system.

Wayne Tupuola, CEO of Laser Photonics, commented, "Our CleanTech laser cleaning system provides an efficient and cost-effective method for removing biofilms from various materials and surfaces.

When microorganisms adhere to the surface of an object by secreting viscous gelatinous substances, they form a biofilm in a humid environment. Biofilm can be formed on water treatment system components, food processing plant machinery, medical equipment, and ship hulls. CleanTech laser cleaning allows you to quickly evaporate biofilm on almost any surface through a non-contact, environmentally friendly program that is safe and easy to use for operators.

CleanTech laser sandblasting technology
The CleanTech laser sandblasting technology manufactured by Laser Photonics is environmentally friendly, cost-effective, and time-saving. Applications include rust removal, paint removal, surface treatment, etc. This technology is an excellent alternative to traditional cleaning methods such as sandblasting, dry ice blasting, and other sandblasting techniques.

Source: Laser Network

関連のおすすめ
  • IPG launches dual beam fiber laser for additive manufacturing applications

    Recently, American fiber laser giant IPG Photonics announced the launch of a new laser series specifically designed for the additive manufacturing field.The highlight of this series of lasers lies in its integration of IPG's unique dual beam technology, which can independently regulate and simultaneously emit core and ring beams, setting a new benchmark in accuracy, efficiency, and reliability.Ba...

    2024-11-25
    翻訳を見る
  • Breakthrough development of terahertz quantum cascade lasers

    With the development of groundbreaking components for terahertz quantum cascade lasers, a huge leap has been made in the field of laser technology. A group of researchers have successfully designed a broadband single-chip external coupler with the potential to redefine the functionality of terahertz QCL.The new external coupler is fundamentally based on planar bimetallic waveguides. Its design is ...

    2024-01-04
    翻訳を見る
  • Lumiotive Launches New LiDAR Sensor LM10

    Recently, optical semiconductor developer Lumiotive, headquartered in Seattle, USA, launched a new LiDAR sensor LM10, which is its first fully produced product of light controlled metasurface (LCM) technology designed for digital beam steering.The developers stated that compared to mechanical systems, their digital beam steering method overcomes the limitations of traditional LiDAR sensors in term...

    2023-09-02
    翻訳を見る
  • Preparation of all silicon dielectric metasurface by femtosecond laser modification combined with wet etching, achieving ideal compatibility with complementary metal oxide semiconductor technology

    The fully dielectric element surface has the characteristics of low material loss and strong field localization, making it very suitable for manipulating electromagnetic waves at the nanoscale. Especially the surface of all silicon dielectric elements can achieve ideal compatibility with complementary metal oxide semiconductor technology, making it an ideal choice for large-scale monolithic integr...

    2023-10-23
    翻訳を見る
  • The Boston University research team developed a high-throughput single-cell sorting technique based on stimulated Raman spectroscopy

    A Boston University research project has successfully developed an innovative single-cell sorting technique that uses stimulated Raman spectroscopy to replace traditional fluorescent labeling and achieve labeling free and non-destructive single-cell measurements. This technology is expected to have a profound impact in the fields of cytology, microbiology and biomedical research, allowing scienti...

    2023-09-07
    翻訳を見る