日本語

Tailoring 'hollow' hydrogen molecule generation with two-color, bicircularly polarized laser pulses

880
2023-09-16 14:21:25
翻訳を見る

Rydberg atoms and molecules are characterized by having one or more electrons in highly excited bound states. Such atoms and molecules are said to be in “Rydberg states” and are also called “hollow” atoms and molecules. Rydberg states are useful for studying various phenomena arising in intense light–matter interaction that involve electronic excitation with an intense laser pulse via optical processes like “multiphoton resonant excitation” and “frustrated tunneling ionization.”

In multiphoton resonant excitation, atoms or molecules are excited to Rydberg states through the absorption of multiple photons (units of electromagnetic radiation). In contrast, frustrated tunneling ionization-induced Rydberg states result from an interaction between the electron and the intense electric field of the laser. Thus, both the laser photon and the laser field jointly contribute to the Rydberg state excitation (RSE) process. However, the extent of the individual contributions of these two effects has not been experimentally determined so far.

Now, in a study published in Advanced Photonics, a team of researchers led by Professor Jian Wu from East China Normal University has developed an experimental method to isolate the effects of each mechanism in RSE.

Their method involves exciting hydrogen molecules to Rydberg states by controlling the photon effect and field effect using a bicircular two-color (BCTC) laser field, a type of laser field that is generated by combining two circularly polarized laser beams with different frequencies. Using two laser beams enabled the researchers to adjust the energy of the photons that are used to excite the hydrogen atoms.

 Additionally, by changing the helicity of the BCTC field, they were able to switch the electron recapture processes on and off, manipulating the field effect. Thus, they were able to generate Rydberg states while varying the extent to which each effect contributed to the process. The researchers then determined the extent to which the field excitation and photon absorption processes contributed to RSE by comparing the Rydberg state yields for different polarizations and photon counts.

“By finely adjusting the relative field strength of the two colors, we could manipulate the waveform of the laser field and the number of photons participating in the RSE processes and, in turn, the relative contributions of the field and photon effects,” explains Hongcheng Ni, the co-corresponding author of the work.

In their experimental setup, the BCTC laser fields were generated using the combination of a fundamental wave (FW) laser pulse and a second harmonic (SH) pulse with twice the fundamental frequency. These pulses were combined using a dichromatic mirror to generate either counter- or co-rotating two-color laser fields. These pulses were then focused on a supersonic jet of hydrogen gas inside a reaction microscope to create Rydberg states of hydrogen molecules.

The researchers found that increasing the relative strength of the SH field (with photons twice as energetic as the FW field) led to an overall increasing yield of Rydberg states, indicating an important role of the photon effect. Additionally, switching the polarization of the BCTC field from co-rotating to counter-rotating also led to an increase in the Rydberg state yield. The researchers attributed this observation to the suppression of the field effect for co-rotating fields.

The experimental study provides important insights into RSE in an intense laser field with potential implications for a wide range of fields, including quantum physics, chemistry, and astrophysics. “Rydberg atoms and molecules have the potential to serve as building blocks for advanced technologies related to quantum information, quantum nonlinear optics, long-range many-body interactions, and precision measurements. In this regard, our study can offer a promising route for manipulating and optimizing the RSE yields under intense laser field excitations,” says Wenbin Zhang, the first author and co-corresponding author of the work.

The promises held by hollow atoms certainly don’t ring hollow!

Source: SPIE

関連のおすすめ
  • The "white" laser device from startup Superlight Photonics will completely transform imaging

    Superlight Photonics, a start-up company headquartered in Enshurd, has developed a broadband laser chip that can replace the bulky and power consuming technology currently used in advanced imaging and metering equipment.This idea suddenly appeared in his mind, while moving his other belongings from Germany to his new home in Enschede. During his doctoral research at the Max Planck Institute of Mul...

    2023-10-28
    翻訳を見る
  • Nat. Commun.: Two color orthogonal polarized organic light-emitting diode

    In recent years, linearly polarized organic light-emitting diodes have greatly enriched the application scenarios of polarization optics and optoelectronics industries. The low-cost and large-area preparation of linearly polarized organic light-emitting diodes with high polarization, strong directional emission, narrow bandwidth, and multi-color adjustability is an important challenge in the curre...

    2024-02-29
    翻訳を見る
  • Switzerland's top 100 sales drop to 330.9 million Swiss francs in the first half of the year

    Recently, Swiss company Bystronic disclosed its financial performance for the first half of 2024.The financial report shows that the market situation for the Swiss Super 100 in the first half of 2024 remains very tense. Customers in various end markets are unable to fully utilize their production capacity, and operations in all regions are relatively cautious.Despite Swiss supercar actively reduci...

    2024-07-24
    翻訳を見る
  • Laser direct writing technology for preparing micrometer scale heatable graphene de icing and anti icing surfaces broadens the preparation method of new de icing and anti icing devices

    Research backgroundIn transportation, industrial production, and practical life, icing often brings great troubles, and the most serious is that during the flight of an aircraft, key components once frozen will seriously affect navigation safety.The traditional passive deicing and anti icing strategies for aircraft, such as mechanical vibration and anti freezing liquids, have problems such as inco...

    2023-10-16
    翻訳を見る
  • Scientists plan to build particle accelerator to power giant chip factory

    Scientists are exploring new ways to get around limitations on the lithography machines used to produce microchips. Researchers are using particle accelerators to create new laser sources that could lay the foundation for the future of semiconductor manufacturing.Plans are underway to build a particle accelerator with a circumference between 100 and 150 meters (328 and 492 feet), about the size of...

    2023-09-25
    翻訳を見る