日本語

The researchers expect the EUV lithography market to grow from $9.4 billion in 2023 to $25.3 billion in 2028

813
2023-08-04 16:47:18
翻訳を見る

The researchers estimate the period from 2023 to 2028. EUV lithography will address the limitations of traditional optical lithography, which has reached its physical limits in terms of resolution. The shorter wavelength of EUV light allows for the creation of smaller features and tighter patterns on silicon wafers, enabling the manufacture of advanced microchips with greater transistor densities.

The key component of EUV lithography is the EUV light source, which involves generating and manipulating 13.5 nm of high-energy light. This is done by using lasers to generate plasma from tin droplets, which emit extreme ultraviolet radiation. The EUV light is then reflected and focused using a series of precisely designed mirrors, transferring the desired pattern onto a silicon wafer coated with a light-sensitive material called a photoresist.

 

EUV lithography has several advantages over previous lithography techniques. First, it can significantly increase chip density, enabling the production of more powerful and complex ics.

 

Second, it simplifies the manufacturing process and increases production efficiency by reducing the number of steps required for pattern transfer. Finally, EUV lithography allows for better control of critical dimensions and reduced pattern variability, resulting in improved chip performance and yield.

 

EUV lithography plays a key role in the production of advanced ics for a variety of applications such as high-performance computing, artificial intelligence and mobile devices.

 

Foundries are expected to grow at the highest CAGR during the forecast period.

In the commercial sector, foundries are manufacturing plants that specialize in providing semiconductor manufacturing services to semiconductor companies and integrated device manufacturers (IDMs). Foundries are primarily focused on manufacturing processes for the semiconductor industry and do not engage in chip design.

 

Foundries play a vital role in the semiconductor industry by providing manufacturing services to companies that lack their own manufacturing facilities or choose to outsource chip production.

 

Fabless companies and ID work with foundries to transfer their chip designs, known as intellectual property (IP), to foundries for manufacturing. Well-known foundries that provide semiconductor manufacturing services including EUV lithography include companies such as TSMC, GlobalFoundries, Samsung Foundries, and others.

 

The growth of foundry companies can be attributed to their substantial investments in EUV lithography, with Asia-Pacific countries being the main contributors to the expansion and advancement of the EUV lithography market.

 

During the forecast period, the EUV mask segment is expected to grow at the second highest CAGR in the EUV lithography equipment market.

 

EUV masks, also known as EUV masks or EUV photomask, play a crucial role in an advanced lithography process called extreme ultraviolet lithography (EUVL). EUV lithography is a state-of-the-art technology for manufacturing the next generation of next-generation semiconductor devices characterized by smaller feature sizes and enhanced performance.

 

EUV masks help to pattern integrated circuits on semiconductor wafers by containing circuit patterns projected onto the wafer during the photolithography process. Unlike traditional optical masks used in older lithography techniques, EUV masks are specifically designed to function in ultraviolet light at wavelengths of about 13.5 nanometers. They consist of thin substrates coated with multiple layers of reflective material that help to reflect and focus EUV light onto the wafer, enabling precise and high-resolution patterning. The complex structure of the EUV mask involves advanced manufacturing techniques and strict quality control measures to ensure the accuracy and reliability of the circuit pattern. Several companies are involved in the manufacture of EUV masks and related products,

The Asia Pacific region is expected to grow at the highest CAGR during the forecast period.

 

Taiwan is home to leading semiconductor companies such as Taiwan Semiconductor Manufacturing Company (TSMC), the world's largest dedicated semiconductor foundry. TSMC has been at the forefront of adopting and advancing EUV lithography technology to be able to produce advanced chip sizes with smaller sizes and higher performance.

 

The company has made significant investments in EUV infrastructure and has been instrumental in driving the development and commercialization of EUV lithography systems. With its strong semiconductor ecosystem and commitment to technological innovation, Taiwan plays a vital role in increasing the capability and widespread adoption of EUV lithography in the semiconductor industry.

 

Some companies are innovating in EUV lithography technologies and systems. For example, in August 2020, TSMC developed the world's first environmentally friendly dry cleaning technology for EUV light hoods, designed to replace traditional cleaning processes.

 

Source: Laser Network

関連のおすすめ
  • Smaller laser facilities use new methods to break records before proton acceleration

    The Helmholtz Dresden Rosendorf Center (HZDR) has made significant progress in laser plasma acceleration. By adopting innovative methods, the research team successfully surpassed previous proton acceleration records significantly.They obtained energy for the first time that can only be achieved in larger facilities so far. As reported by the research team in the journal Nature Physics, promising a...

    2024-05-15
    翻訳を見る
  • MKS Malaysia Penang Supercenter Factory Holds Groundbreaking Ceremony

    Recently, MKS Instruments held a groundbreaking and celebration ceremony for its Supercenter factory in Penang, Malaysia.This important moment has been witnessed jointly by the Malaysian Investment Development Authority (MIDA) and Invest Penang, which will help meet the growing demand for semiconductor equipment for wafer manufacturing in the region and globally. This advanced factory, covering ...

    2024-11-01
    翻訳を見る
  • New nanophotonic circuits demonstrate the potential of quantum networks

    The Purdue University team in the United States has captured alkali metal atoms (cesium) in integrated photonic circuits, which can serve as transistors for photons (the smallest energy unit of light). These captured atoms demonstrate for the first time the potential of cold atom integrated nanophotonic circuits to construct quantum networks. The research results were published in the latest issue...

    2024-08-14
    翻訳を見る
  • Investing nearly £ 520 million, this synchrotron light source in the UK will be upgraded

    Recently, the UK's national synchrotron "Diamond Light Source" announced an investment of nearly £ 520 million ($648.3 million) to implement three new flagship beam lines and upgrade existing beam lines. This comprehensive upgrade will be delivered by 2030.The Department for Science, Innovation, and Technology and the biomedical charity Wellcome jointly approved the facility upgrade project,...

    2023-09-27
    翻訳を見る
  • 2D photoelectric neuron array can achieve broadband and low loss optical nonlinearity accessible to ambient light

    Light can calculate functions during propagation and interaction with structured materials, with fast speed and low energy consumption. The use of all optical neural networks for general computing requires an optical activation layer with nonlinear dependence on the input. However, existing optical nonlinear materials either have slow speeds or very weak nonlinearity at the level of natural light ...

    2024-03-20
    翻訳を見る