日本語

New research on achieving femtosecond laser machining of multi joint micromachines

455
2023-09-15 14:06:09
翻訳を見る

The team of Wu Dong, professor of the Micro/Nano Engineering Laboratory of University of Science and Technology of China, proposed a processing strategy of femtosecond laser two in one writing into multiple materials, manufactured a micromechanical joint composed of temperature sensitive hydrogel and metal nanoparticles, and then developed a multi joint humanoid micromachine with multiple deformation modes (>10). The relevant research results were recently published in Nature Communications.

In recent years, femtosecond laser two-photon polymerization technology has been widely used as a true three-dimensional machining method with nano precision to manufacture various functional microstructures. These microstructures exhibit broad application prospects in fields such as micro nano optics, micro sensors, and micro machine systems. However, it is still highly challenging to utilize femtosecond lasers to achieve composite multi material processing and further construct multimodal micro/nano machinery.

Femtosecond laser two in one processing strategy includes the use of asymmetric two-photon polymerization to build hydrogel joints, and laser reduction deposition of silver nanoparticles in the local area of the joint. Among them, the asymmetric photopolymerization technology makes the cross-linking density of the local area of the hydrogel micro joint produce anisotropy, and finally enables it to realize the bending deformation with controllable direction and angle.

In situ laser reduction deposition can accurately process silver nanoparticles on hydrogel joints. These silver nanoparticles have a strong photothermal conversion effect, which enables the mode switching of multi joint micromachines to exhibit excellent characteristics such as ultra-short response time (30 milliseconds) and ultra-low driving power (<10 milliwatts).

As a typical example, 8 micro joints are integrated into a humanoid micromachine. Subsequently, researchers utilized spatial light modulation technology to achieve multifocal beams in 3D space, thereby accurately stimulating each micro joint. The collaborative deformation between multiple joints promotes the completion of multiple reconfigurable deformation modes in humanoid micro robotic arms. Finally, at the micrometer scale, humanoid micromachines "danced".

In concept validation, by designing the distribution and deformation direction of micro joints, a dual joint micro robotic arm can collect multiple micro particles in the same and opposite directions. In summary, the femtosecond laser two in one machining strategy can construct deformable micro joints in various local areas of three-dimensional microstructures, achieving various reconfigurable deformation modes.
Researchers have introduced that micro robotic arms with multiple deformation modes will exhibit broad application prospects in micro cargo collection, microfluidic manipulation, and cell manipulation.

Source: Micro and Nano Engineering Laboratory, University of Science and Technology of China

関連のおすすめ
  • The acoustooptic modulation of gigawatt level laser pulses in ambient air can be applied to other optical components such as lenses and waveguides

    An interdisciplinary research group, including the German synchrotron radiation accelerator DESY and the Helmholtz Institute in Jena, Germany, reported that invisible gratings made of air not only are not damaged by lasers, but also maintain the original quality of the beam.The relevant research has been published in Nature Photonics under the title of "Acousto opt modulation of gigawatt scale las...

    2023-10-12
    翻訳を見る
  • Measuring invisible light through an electro-optic cavity

    Researchers have developed a new experimental platform that can measure the light wave electric field captured between two mirrors with sub periodic accuracy. This electro-optical Fabry Perot resonant cavity will achieve precise control and observation of the interaction between light and matter, especially in the terahertz (THz) spectral range. The research results were published in the journal "...

    02-19
    翻訳を見る
  • Nanjing University of Science and Technology has made new progress in the field of programmable lensless holographic cameras

    Recently, Professor Chen Qian and Professor Zuo Chao's research group from the School of Electronic Engineering and Optoelectronic Technology at Nanjing University of Science and Technology proposed a minimalist optical imaging method based on programmable masks - programmable Fresnel zone aperture lensless imaging technology. The related achievement, titled "Lensless Imaging with a Programmable F...

    04-14
    翻訳を見る
  • Acta: Revealing the mechanism of defect formation in additive manufacturing

    Main author: Yanming Zhang, Wentao Yana*The first unit: National University of SingaporePublished Journal: Acta MaterialiaResearch backgroundIndustry pain point: Although laser powder bed melting (LPBF) technology can manufacture complex components, the lack of consistent product quality is still the core bottleneck restricting its industrial application. Research has shown that up to 35% of proce...

    02-21
    翻訳を見る
  • Two photon absorption quantum mechanism breaks through the resolution and efficiency limits of optical nanoprinting

    Recently, a research team from the School of Physics and Optoelectronic Engineering at Jinan University has elucidated for the first time the time-dependent quantum mechanism of two-photon absorption and proposed a two-photon absorption (fpTPA) optical nanoprinting technology based on few photon irradiation, successfully breaking through the bottleneck of traditional two-photon printing technology...

    03-06
    翻訳を見る