日本語

Sweden's powerful laser system generates ultra short laser pulses

676
2025-08-20 10:34:01
翻訳を見る

For the first time, researchers at Umeå University, Sweden, have demonstrated the full capabilities of their large-scale laser facility. The team reports generating a combination of ultrashort laser pulses, extreme peak power, and precisely controlled waveforms that make it possible to explore the fastest processes in nature.


Umeå’s laser is 11 m long and generates very short pulses

 


László Veisz and colleagues built Umeå’s new laser


The custom-built laser system, called the Light Wave Synthesizer 100 (LWS100), measures 11 meters in length and 1.5 meters in width – far larger than many commercial lasers which can be comparable in size to a pencil or a book. The size of the LWS100 is necessary to generate and amplify ultrashort laser pulses to extreme peak power.

The work is described in a study published in Nature Photonics (see more, below).

At its peak it generates 100 terawatts. Umeå states that this output is “equivalent to five times the average power consumption of the world – although only for a few millionths of a billionth of a second.” This makes the system the most powerful laser in Sweden and opens the doors to groundbreaking applications, such as understanding ultrafast processes in biomolecules, developing light-driven electronics, and improving solar panel efficiency.

‘Filming’ electron movements
What sets the system apart, continues the Umeå announcement, is that the pulses are not only extremely short (4.3 femtoseconds) and powerful – they also have a reproducible and controlled electric field waveform, identical from pulse to pulse.

Achieving this level of control is particularly challenging in large-scale laser systems, but critical for many advanced applications. This can generate even shorter attosecond x-ray pulses that can be used to “film” the movement of electrons in real time.

“We can now show that the system delivers exactly what we envisioned when it was built. This is a milestone for our research,” said Laszlo Veisz, Professor at Umeå University.

A wide range of experiments are planned for this laser system, taking advantage of its extreme temporal and spatial light concentration. By shaping and focusing ultrashort pulses, attosecond electron bunches can be accelerated to ultra-relativistic energies in compact micro-accelerators, or next-generation X-ray sources can be created to advance attosecond science.

The laser system was installed and inaugurated at the Department of Physics at Umeå University in 2022. This newly-published Nature Photonics paper is the first scientific study to demonstrate its full performance.

Nature Photonics paper abstract

“We report an enhanced optical parametric chirped pulse amplifier system that produces light pulses with a peak power of about 100 TW and a pulse duration as short as 4.3 fs with full waveform control. Coherent field synthesis generates a broadband spectrum, spanning from the visible to the near infrared, through three cascaded amplification stages, each housing two optical parametric amplifiers that sequentially boost complementary spectral regions.

“The resulting light transients are waveform-stabilized to <300 mrad and focused to an intensity of 1021 W cm−2 and exhibit an outstanding high dynamic range in temporal contrast. Together, these characteristics render the system well suited for demanding relativistic laser–plasma experiments.”

Source: optics.org

関連のおすすめ
  • Coherent CEO Resigns in Restructuring

    Recently, laser giant Coherent (COHR) released an announcement.Coherent Corporation announced that President Walter R. Bashaw II will resign on September 6, 2024, due to a company restructuring that resulted in the cancellation of his position.His resignation is classified as a 'Good Reason' termination, which ensures that he will receive full severance compensation in accordance with existing com...

    2024-08-20
    翻訳を見る
  • Patterned waveguide enhanced signal amplification within perovskite nanosheets

    Researchers at Busan National University, led by Kwangseuk Kyhm, Professor of Ultra Fast Quantum Optoelectronics from the Department of Optics and Mechatronics, are enhancing signal amplification inside cesium bromide lead perovskite nanosheets through patterned waveguides.Perovskite is a highly attractive material in solar cell applications, but its nanostructure is now being explored as a new la...

    2024-01-10
    翻訳を見る
  • A new method for generating controllable optical pulse pairs using a single fiber laser

    Researchers from Bayreuth University and Konstanz University are developing new methods to control ultra short laser emission using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse interval of lasers is set by dividing each pulse into two pulses and delaying them at different, mechani...

    2024-01-15
    翻訳を見る
  • NLIGHT releases new fiber laser products

    Recently, nLIGHT launched a new series of ProcessGUARD fiber lasers, which innovatively integrates process monitoring systems with fiber lasers and is committed to providing quality "protection" for applications such as cutting, welding, and additive manufacturing.New ConceptThe nLIGHT ProcessGUARD series fiber laser integrates a photodiode based plasma process monitoring system into the nLIGHT Co...

    2024-11-07
    翻訳を見る
  • EOS and AMCM will open a new UK Additive Manufacturing Excellence Center

    The University of Wolverhampton (UK), along with global 3D printing leaders EOS and AMCM, will collaborate to establish a new Centre of Excellence (AM) for Additive Manufacturing in the UK. This partnership will provide cutting-edge technology from EOS and AMCM, and focus on developing advanced materials and processes for high demand applications in industries such as aerospace, automotive, aerosp...

    2024-04-15
    翻訳を見る