日本語

Oxford University develops technology for capturing strong laser pulses in one go

674
2025-07-07 11:12:47
翻訳を見る

Physicists at the University of Oxford have unveiled a “pioneering” method for capturing the full structure of ultra-intense laser pulses in a single measurement. The breakthrough, a collaboration with Ludwig-Maximilian University of Munich and the Max Planck Institute for Quantum Optics, could revolutionize the ability to control light-matter interactions, say the team.
The Oxford announcement states: “This would have transformative applications in many areas, including research into new forms of physics and realising the extreme intensities required for fusion energy research. The achievement is described in Nature Photonics.

 



Ultra-intense lasers can accelerate electrons to near-light speeds within a single oscillation of an electric field, making them a powerful tool for studying extreme physics. However, their rapid fluctuations and complex structure make real-time measurements of their properties challenging. Until now, existing techniques typically required hundreds of laser shots to assemble a complete picture, limiting reesrachers’ ability to capture the dynamic nature of these extreme light pulses.

RAVEN: single-shot diagnosis

The new study, jointly led by researchers in the University of Oxford’s Department of Physics and the Ludwig-Maximilian University of Munich (LMU), Germany, describes a novel single-shot diagnostic technique, named RAVEN (Real-time Acquisition of Vectorial Electromagnetic Near-fields). This allows scientists to measure the full shape, timing, and alignment of individual ultra-intense laser pulses with high precision.

Having a complete picture of a laser pulse’s behaviour could revolutionize performance gains in many areas. For example, it could enable scientists to fine-tune laser systems in real-time and bridge the gap between experimental reality and theoretical models, providing better data for computer models and AI-powered simulations.

Splitting beam into two
The method works by splitting the laser beam into two parts. One of these is used to measure how the laser’s wavelength changes over time, while the other part passes through a birefringent material which separates light with different polarisation states. A microlens array then records how the laser pulse’s wavefront, or its shape and direction, is structured.

Lead researcher Sunny Howard, PhD researcher at Oxford and visiting scientist to LMU, said, “Our approach enables the complete capture of an ultra-intense laser pulse in real-time, including its polarization state and complex internal structure. This not only provides unprecedented insights into laser-matter interactions but also paves the way for optimizing high-power laser systems in a way that was previously impossible.”

The technique was successfully tested on the ATLAS-3000 petawatt-class laser in Germany, where it revealed small distortions and wave shifts in the laser pulse that were previously impossible to measure in real-time, allowing the research team to fine-tune the instrument. These distortions, known as spatio-temporal couplings, can significantly affect the performance of high-intensity laser experiments.

By providing real-time feedback, RAVEN allows for immediate adjustments, improving the accuracy and efficiency of experiments in plasma physics, particle acceleration, and high-energy density science. It also results in significant time savings, since multiple shots are not required to fully characterise the laser pulse’s properties.

The technique also provides a potential new route to realise inertial fusion energy devices in the laboratory – a key gateway step towards generating fusion energy at a scale sufficient to power societies. Inertial fusion energy devices use ultra-intense laser pulses to generate highly energetic particles within a plasma, which then propagate into the fusion fuel.


Co-author Professor Peter Norreys, also from Oxford’s Department of Physics, said, “Where most existing methods would require hundreds of shots, RAVEN achieves a complete spatio-temporal characterisation of a laser pulse in just one. This not only provides a powerful new tool for laser diagnostics but also has the potential to accelerate progress across a wide range of ultra-intense laser applications, promising to push the boundaries of laser science and technology.”

Looking ahead, the researchers hope to expand the use of RAVEN to a broader range of laser facilities and explore its potential in optimising inertial fusion energy research, laser-driven particle accelerators and high-field quantum electrodynamics experiments.

Source: optics.org

関連のおすすめ
  • New two-photon aggregation technology significantly reduces the cost of femtosecond laser 3D printing

    Scientists at Purdue University in the United States have developed a new type of two-photon polymerization technology. This technology cleverly combines two lasers and utilizes 3D printing technology to print complex high-resolution 3D structures while reducing femtosecond laser power by 50%. It helps to reduce the cost of high-resolution 3D printing technology, thereby further expanding its appl...

    2024-07-05
    翻訳を見る
  • Defects and solutions that are prone to occur when laser welding square shell battery explosion-proof valves for power batteries

    For example, the commonly used square shell battery cells for power batteries include laser welding of cover explosion-proof valves, laser welding of pole columns, and laser welding of cover plates and shells. During the process of laser welding of aluminum alloy, it is easy to generate unqualified phenomena such as explosion points, pores, welding cracks, excessive depth and width of fusion. ...

    2023-09-15
    翻訳を見る
  • Breakthrough! Extending the lifespan of solar panels to 50 years using lasers

    Recently, the National Renewable Energy Laboratory (NREL) under the US Department of Energy has made a revolutionary breakthrough by developing a concept validation method aimed at completely removing polymers from solar panel manufacturing, thereby achieving more efficient and environmentally friendly recycling.Solar panels have always been praised for their recyclability. However, the thin plast...

    2024-04-30
    翻訳を見る
  • ZLDS100, a British high frequency laser displacement sensor, monitors multipoint vibration of silencers

    A muffler is a key component of a car's exhaust system, designed to reduce noise levels and emissions. The vibration of a muffler can have a significant impact on its performance and life. In order to understand the performance and behavior of the muffler, it is necessary to make multi-point vibration measurement. First, it enables engineers to assess the structural integrity and durability of a m...

    2023-08-04
    翻訳を見る
  • Single photon avalanche diode detector enables 3D quantum ghost imaging

    A team of researchers at the Fraunhofer Institute for Optoelectronics, Systems Technology and Image Development and Karlsruhe Institute of Technology are using single-photon avalanche diode (SPAD) arrays to achieve three-dimensional (3D) quantum ghost imaging.The new method, called "asynchronous detection," produces the lowest photon dose of any measurement and can be used to image light-sensitive...

    2023-09-06
    翻訳を見る