日本語

China University of Science and Technology has made significant progress in the field of pure red perovskite light-emitting diodes

1237
2025-05-12 14:37:53
翻訳を見る

Recently, four research groups from the University of Science and Technology of China, namely Yao Hongbin, Fan Fengjia, Lin Yue, and Hu Wei, have collaborated to make significant progress in the field of pure red perovskite light-emitting diodes (LEDs). The team independently invented the Electrical Excitation Transient Spectroscopy (EETA) technology and used it to reveal that hole leakage is the key factor causing the efficiency roll off of pure red three-dimensional perovskite LEDs. They also developed a new type of three-dimensional perovskite heterojunction luminescent layer to reduce hole leakage (Figure 1), successfully preparing high-performance pure red perovskite LEDs. The relevant research results have been published in the journal Nature, marking significant progress in pure red perovskite LED technology.


Figure 1. Three dimensional perovskite heterojunction limits hole leakage suppression in LED


Currently, high-performance pure red perovskite LEDs (with external quantum efficiency exceeding 20%) that have been reported mainly use quasi two-dimensional and small-sized quantum dot perovskites. However, due to their low carrier mobility, it is difficult to improve brightness. Three dimensional mixed halide perovskites (such as CsPbI3 xBrx) have high carrier mobility, but currently, the efficiency of CsPbI3 xBrx three-dimensional perovskite LEDs decreases significantly with increasing brightness. Due to the lack of in situ characterization equipment for LEDs, the underlying mechanism is unclear.

In response to this issue, team members used their independently invented EETA technology to "film" CsPbI3 xBrx based LEDs and found that hole leakage into the electron transport layer is the performance bottleneck of three-dimensional CsPbI3 xBrx based LEDs. The EETA results indicate that better confinement of holes and suppression of their leakage are key to achieving high-performance CsPbI3 xBrx based pure red LEDs. In order to enhance the carrier confinement capability of perovskite, the team proposed a novel three-dimensional perovskite heterojunction design, which contains narrow bandgap emitters and wide bandgap energy barriers for confined carriers within the heterojunction material. The wide bandgap material is achieved by inserting organic molecules with strong interaction and low steric hindrance with the lead halide framework into a portion of the CsPbI3 xBrx lattice, thereby inducing partial lattice expansion (Figure 2a, b). 

Through systematic theoretical calculations and molecular design, we have successfully developed organic molecules that form stable bonds with lead halide frameworks through multifunctional functional groups such as carboxyl, amino, and sulfonyl groups, and achieved precise introduction of wide bandgap phases (Figure 2c). Through this method, the team obtained perovskite materials with heterostructures and continuous three-dimensional skeletons, which can achieve carrier confinement while maintaining high mobility. The obtained three-dimensional perovskite heterostructure was fully validated by high-resolution transmission electron microscopy (Figure 2d-i).


Figure 2. Design and Material Characterization of Three Dimensional CsPbI3 xBrx Perovskite Heterojunction


By constructing a three-dimensional CsPbI3 xBrx heterojunction luminescent layer, the hole leakage of pure red perovskite LED devices was effectively suppressed (Figure 3a, b). The peak external quantum efficiency (EQE) of the corresponding device reaches 24.2%, and the maximum brightness is 24600 cd m-2 (Figure 3c, d). And the device exhibits very low efficiency roll off - even at a brightness of 22670 cd m-2, the device still has an EQE of over 10%, which is better than previously reported results (Figure 3e). The research results of this work demonstrate the enormous potential of three-dimensional perovskite heterojunction material design in developing efficient, bright, and stable perovskite LEDs.


Figure 3. Performance of Three Dimensional Heterojunction CsPbI3 xBrx Based Pure Red LED


Song Yonghui (PhD), Li Bo (postdoctoral fellow), Wang Zijian (PhD student), and Tai Xiaolin (PhD student) from the University of Science and Technology of China are co first authors of this paper. Professors Yao Hongbin, Fan Fengjia, Lin Yue, and Hu Wei from the University of Science and Technology of China are co corresponding authors of this paper. The development of EETA technology has received strong support from Academician Du Jiangfeng. This work has received support from the National Natural Science Foundation of China, the Ministry of Science and Technology, and other funding sources. The Physical and Chemical Science Experimental Center provided support for the development of this project with characterization equipment such as SEM, PL, UV vis, and aberration corrected electron microscopy.

Source: Opticsky

関連のおすすめ
  • JMP: Small hole mode swing laser welding of nickel based high-temperature alloys - simulation, experiment, and process diagram

    IntroductionThe small hole mode swing laser welding has gained increasing recognition due to its ability to bridge gaps, refine microstructures, and enhance the mechanical properties of welds. However, the effects of amplitude, frequency, welding speed, laser beam power, and beam radius on heat flux distribution, melting mode, and three-dimensional temperature field have not been well understood. ...

    04-11
    翻訳を見る
  • Assisting Gas Mixing to Promote the Development of Fiber Laser Technology

    Just ten years ago, fiber laser cutting machines were considered experts in thin plates. The stores quickly realized that they had to invest in them to compete, at least by reducing their instrument materials. For high-quality sheet metal cutting, CO2 laser is still the way to go. Of course, fiber lasers can cut thicker blanks, but the quality is not very good, and their speed advantage almost dis...

    2024-01-11
    翻訳を見る
  • Laserline completes 70% equity acquisition of WBC Photonics

    Recently, Laserline, a leading semiconductor laser manufacturer in Germany, announced that it has completed the acquisition of a 70% stake in WBC Photonics, a Boston based laser technology expert, marking a significant strategic expansion for Laserline. Through this transaction, Laserline not only expands its product portfolio to include blue laser systems with excellent beam quality (better tha...

    2024-09-20
    翻訳を見る
  • Screen Innovation Launches Short Focus Elevated Electric Laser TV Projection Screen

    Screen Innovations has added a short focal lift electric screen solution to its component and material series, meeting the growing demand for large but hidden displays in small media rooms and company boards.Unlike traditional projection systems that require sufficient distance from the projector to the screen or perform best in a darkroom, pop-up laser TVs are only a few inches away from short fo...

    2023-10-27
    翻訳を見る
  • Quantum security developer LuxQuanta raises € 8 million in Series A funding

    LuxQuanta, a company specializing in quantum network security, recently announced the successful completion of an 8 million euro Series A funding round. This round of financing is led by Big Sur Ventures, with A&G as the main investor providing support. New investors include GMV, Wayra, and EIC Fund, as well as existing investors Corning and GTD.The investment is bolstered by the soft financin...

    10-22
    翻訳を見る