日本語

New machine learning algorithm accurately decodes molecular optical 'fingerprints'

1304
2025-05-09 10:57:00
翻訳を見る

Recently, a research team from Rice University in the United States developed a new machine learning algorithm - Peak Sensitive Elastic Network Logistic Regression (PSE-LR). This algorithm is adept at interpreting the unique optical characteristics of molecules, materials, and disease biomarkers, which can help achieve faster and more accurate medical diagnosis and sample analysis. The relevant paper was published in the latest issue of the journal Nano.

The research team stated that the core breakthrough of this technology lies in teaching computers to recognize unique "fingerprints" generated by the interaction between molecules or materials and light. With the help of this technology, in the future, doctors may be able to capture early signals of Alzheimer's disease by simply shining light on a drop of liquid or tissue sample.

PSE-LR not only has the ability to distinguish autumn hair, but also has the interpretability of being open and honest. Unlike other "black box" machine learning models, it can generate clear "feature importance maps" that accurately highlight key spectral segments, making diagnostic results reliable, interpretable, traceable, and easy to verify.

Compared with other machine learning models, PSE-LR shows superior performance, especially in identifying subtle or overlapping spectral features. In addition, in the subsequent series of validation experiments, the performance of the algorithm was also commendable, including the successful detection of the trace presence of COVID-19 spike protein in the liquid, the accurate identification of neuroprotective components in mouse brain tissue, the effective differentiation of microscopic spectral differences in Alzheimer's disease samples, and the identification of the unique optical characteristics of two-dimensional semiconductor materials.

Source: Opticsky

関連のおすすめ
  • The role of PTFE in laser processing

    Polytetrafluoroethylene (PTFE) has improved the efficiency and repeatability of nanosecond and picosecond laser processing technologies used in microelectronics and display glass manufacturing. In the field of precision manufacturing, the demand for efficient and repeatable processes is crucial. The laser structure of glass and laser ablation of silicon substrates are key areas where precision p...

    2024-07-26
    翻訳を見る
  • Understanding the "single-mode" and "multi-mode" in cleaning lasers in one article

    In industrial production, cleaning is a crucial step. Traditional cleaning methods, such as mechanical cleaning and chemical cleaning, although can meet production needs to a certain extent, often have problems such as low flexibility and environmental pollution. With the advancement of technology, laser cleaning technology has emerged as a new favorite in the cleaning field due to its high effici...

    05-14
    翻訳を見る
  • Photon Industry Acquisition Information

    Theon International and Exosens SA have reached an agreement to acquire 9.8% of the shares for 268.7 million euros (approximately 312 million US dollars, equivalent to 54.0 euros per share).Theon International is a Greek based developer and manufacturer of customizable night vision, thermal imaging systems, and electro-optical ISR (observation) systems for military and security applications.Theon ...

    10-21
    翻訳を見る
  • Laserline introduces the first blue 4 kW laser

    Laserline will once again showcase its latest laser systems for joining and deposition welding at this year's Welding & Cutting show in Hall 5. This time the focus is on the world's first blue diode laser with an output power of 4 kW, which is said to have been developed for processing copper components.Its 445 nanometer wavelength is absorbed by copper and copper alloys, which is five t...

    2023-09-06
    翻訳を見る
  • New research on achieving femtosecond laser machining of multi joint micromachines

    The team of Wu Dong, professor of the Micro/Nano Engineering Laboratory of University of Science and Technology of China, proposed a processing strategy of femtosecond laser two in one writing into multiple materials, manufactured a micromechanical joint composed of temperature sensitive hydrogel and metal nanoparticles, and then developed a multi joint humanoid micromachine with multiple deformat...

    2023-09-15
    翻訳を見る