Italiano

Tsinghua University develops efficient and stable perovskite quantum dot deep red light devices

173
2025-03-18 14:02:42
Vedi traduzione

Semiconductor quantum dots have the advantages of high quantum yield, narrow emission spectrum, and compatibility with solution processes. They have shown broad application prospects and enormous economic value in the field of optoelectronic materials and devices, and related research has won the Nobel Prize in Chemistry in 2023.

Compared with traditional II-VI and III-V quantum dots (such as CdSe, CdS, InP, etc.), perovskite quantum dots have unique advantages such as low cost, simple synthesis process, and continuously tunable spectra, and have attracted much attention in recent years. The external quantum efficiency of light-emitting devices based on perovskite quantum dots has been improved to over 20%, reaching the threshold for commercial applications. However, due to the poor stability of perovskite quantum dots, the operating life of light-emitting devices is only tens or hundreds of hours, which hinders their further industrialization.

Perovskite quantum dots require ligands to bind to their surface in order to maintain colloidal stability. However, during the growth, purification, film formation, and storage of perovskite quantum dots, highly dynamic and unstable ligands on the surface are prone to detachment, resulting in insufficient coordination of surface atoms, an increase in unsaturated and dangling bonds, and non coordinated atoms on the surface easily binding to other atoms, leading to aggregation or Oswald ripening of perovskite quantum dots, producing various defects and further affecting their luminescence performance and stability.

Recently, the team led by Ma Dongxin from the Department of Chemistry at Tsinghua University proposed a molecular induced quantum dot maturation control strategy, achieving efficient and stable perovskite quantum dot deep red light devices. The team has designed a series of bidentate organic small molecules with small size and molecular flexibility, which can adhere to the surface of perovskite quantum dots by twisting their own structure, interact with mismatched Pb2+, maintain a stable surface state, suppress the adverse aging and aggregation phenomena of perovskite quantum dots, reduce the density of surface defect states, and improve quantum yield.


Figure 1. Schematic diagram of molecular induced quantum dot maturation control strategy


The team has constructed a deep red light device based on high-performance perovskite quantum dots, with a luminescence peak at 686nm and an external quantum efficiency of up to 26.0%. The device exhibits excellent operational stability, with a half-life of 310 minutes at a constant high current density of 13.3mA cm-2, and a half-life of up to 10587 hours at an initial radiance of 190mWSr-1m-2. In addition, this perovskite quantum dot solution exhibits excellent storability, with external quantum efficiencies of 21.7% and 20.3% for devices constructed from the solution after one and three months of storage, respectively.

The above results indicate that the molecular induced quantum dot maturation control strategy proposed in the paper can effectively improve the efficiency and stability of perovskite quantum dot light-emitting devices, making them practical and promising in high-definition displays and biomedical treatments.


Figure 2. Optoelectronic properties of perovskite quantum dot light-emitting devices

 


Figure 3. Stability of perovskite quantum dot light-emitting devices


The related research results, titled "Molecular Induced Ripening Control in Perovskite Quantum Dots for Efficient and Stable Light Emitting Diodes", were published on March 14th in Science Advances.

Chen Jiawei, a postdoctoral fellow in the Department of Chemistry at Tsinghua University, Chen Shulin, an associate professor at the School of Semiconductors (School of Integrated Circuits) at Hunan University, and Liu Xiangyu, a doctoral student in the Department of Chemistry at Tsinghua University, are the co first authors of the paper. Associate Professor Ma Dongxin from the Department of Chemistry at Tsinghua University is the corresponding author of the paper, and the Department of Chemistry at Tsinghua University is the first communication unit. The research has received support from the National Natural Science Foundation of China's Youth Fund, Tsinghua University's Solid Science Program, the Chinese Postdoctoral Program, the Chinese Postdoctoral Special Fund, the National Postdoctoral Researcher Program, and the Tsinghua University's "Water and Wood Scholars" Program.

Source: opticsky

Raccomandazioni correlate
  • Breakthrough in Silicon Based Room Temperature Continuous Wave Topological Dirac Vortex Microcavity Laser

    With the explosive growth of data traffic, the market is extremely eager for hybrid photonic integrated circuits that can combine various optical components on a single chip.Silicon is an excellent material for photonic integrated circuits (PICs), but achieving high-performance laser sources in silicon still poses challenges. The monolithic integration of III-V quantum dot (QD) lasers on silicon i...

    2023-10-26
    Vedi traduzione
  • HP100A-50KW-GD laser power detector for measuring extremely high power laser beams

    The HP100A-50KW-GD laser power detector is mainly designed for manufacturers of high-power lasers and laser systems, factories that use high-power lasers to cut thick metal parts, and military applications.The HP100A-50KW-GD adopts a gold reflector cone and a reduced back reflection geometry, which can capture 97% of incident light and process up to 50 kW of continuous laser power. The back reflec...

    2024-01-16
    Vedi traduzione
  • Analysis of Development Prospects and Technological Trends in the Optical Industry

    As a core supporting field of modern technology, the optical industry has broad and diversified development prospects, benefiting from the cross drive of multiple emerging technologies. The following is a systematic analysis from the perspectives of technology trends, application areas, challenges, and opportunities: Core driving forces and growth areas1. Optical communication and 5G/6GDemand ex...

    un giorno fa
    Vedi traduzione
  • Xinjiang Institute of Physical and Chemical Technology has established the largest database of computational nonlinear optical crystal materials to date

    Modern laser technology urgently requires nonlinear optical materials that can generate coherent light through second harmonic generation. However, only a small portion of the nonlinear optical properties of non centrosymmetric crystal materials have been experimentally or theoretically studied, and exploration for high-performance nonlinear optical crystal materials is still very limited.Recentl...

    2023-10-24
    Vedi traduzione
  • ABB will add optical sensors to four greenhouse gas monitoring satellites

    ABB has signed a third contract with the global leader in high-resolution space greenhouse gas monitoring, GHGSat, to manufacture optical sensors for its C12, C13, C14, and C15 satellites. It is reported that C12, C13, C14, and C15 satellites are scheduled to be launched into orbit in 2024.These new satellites will join GHGSat's expanding constellation for detecting and quantifying industrial gas ...

    2023-12-06
    Vedi traduzione