Italiano

Scientists decipher the code for extending the lifespan of perovskite solar technology

690
2025-03-03 15:28:10
Vedi traduzione

The latest research led by the University of Surrey shows that alumina (Al2O3) nanoparticles can significantly enhance the lifespan and stability of perovskite solar cells, extending the service life of such high-efficiency energy devices tenfold.

Although perovskite solar cells have advantages such as low cost and light weight compared to traditional silicon-based technologies, their commercial potential has always been limited by structural defects, mainly iodine leakage issues. Over time, the escape of iodine can lead to material degradation, reducing device performance and durability.

Through collaboration with the UK National Physical Laboratory and the University of Sheffield, scientists have discovered a solution: embedding alumina (Al2O3) nanoparticles in batteries to capture iodine elements. This breakthrough paves the way for the development of a new generation of solar cells with longer lifespan and lower cost.

The corresponding author of the study, Dr. Hashini Perera from the Institute of Advanced Technology at the University of Surrey, said, "Our research results are exciting. Ten years ago, the idea of long-term stable operation of perovskite cells in real environments was still out of reach. Through this improvement, we have achieved a breakthrough in stability and performance, pushing perovskite technology further towards mainstream energy solutions.

 



Dr. Hashini Perera, a graduate student at the Institute of Advanced Technology at the University of Surrey
This study, published in the journal EES Solar, tested the improved battery by simulating high temperature and high humidity conditions in real environments. The results showed that solar cells embedded with Al2O3 nanoparticles maintained high performance in tests lasting over two months (1530 hours), with a tenfold increase in lifespan compared to unimproved cells with only 160 hours.

Further analysis shows that Al2O3 nanoparticles not only help form a more uniform perovskite structure, reduce defects, and improve conductivity, but also form a two-dimensional perovskite protective layer, effectively blocking moisture erosion.

Dr. Imalka Jayawardena from the Advanced Technology Institute at the University of Surrey added, "By addressing the common challenges of perovskite technology, our research has opened up new possibilities for developing more economical, efficient, and easily accessible solar energy technologies. This is a crucial step in developing high-performance practical solar cells that will accelerate their global commercialization process.

Professor Ravi Silva, Director of the Institute of Advanced Technology and Interim Director of the Surrey Institute for Sustainable Development, emphasized that "as the net zero emissions target approaches, expanding the application of renewable energy is more urgent than ever. Such technological breakthroughs will play a key role in meeting global energy demand and promoting sustainable development transformation. The latest analysis by the Confederation of British Industry also shows that skills training in the renewable energy sector can not only enhance career prospects, but also bring higher salaries than the national average, confirming the dual economic and environmental benefits of clean energy investment.

Source: opticsky

Raccomandazioni correlate
  • From Colored Glass Windows to Lasers: Nanogold Changes Light

    For a long time, craftsmen have been fascinated by the bright red color produced by gold nanoparticles scattered in colored glass masterpieces. The quantum origin of this optical miracle has always been mysterious, until modern advances in nanoengineering and microscopy revealed the complexity of plasma resonance.Now, researchers are preparing to push nano plasma technology, which was once used fo...

    2024-01-02
    Vedi traduzione
  • Showcasing the world's fastest photonics alignment system for SiPh chips on Photonics West

    With its proprietary fast multi-channel photon alignment algorithm and professional high-precision machinery, PI helps customers improve production efficiency to participate in the rapidly growing silicon photonics market. Over the past decade, PI has been continuously expanding its range of automatic photon alignment engines and will launch new systems at both ends of the spectrum in this year's ...

    2024-01-19
    Vedi traduzione
  • Processing application of ultrafast laser on bulk metallic glass

    Recently, an international research team led by Professor Zhang Peilei from the School of Materials Science and Engineering at Shanghai University of Engineering and Technology published a review paper titled "Research status of femtosecond lasers and nanosecond lasers processing on bulk metallic glasses (BMGs)" in the renowned journal Optics&Laser Technology in the field of optics and lasers....

    2023-09-18
    Vedi traduzione
  • Entangled photon pairs generated by quantum light sources can be used for quantum computing and cryptography

    A new device composed of semiconductor rings generates pairs of entangled photons, which can be used in photon quantum processors.Quantum light sources generate entangled photon pairs, which can be used in quantum computing and cryptography. A new experiment has demonstrated a quantum light source made from semiconductor gallium nitride. This material provides a multifunctional platform for devic...

    2024-03-30
    Vedi traduzione
  • Measurement of spectral line intensity of NO2 near 6.2 microns using a quantum cascade laser spectrometer

    Recently, a joint research team from the Key Laboratory of Optoelectronic Information Acquisition and Processing of Anhui University, the Laboratory of Laser Spectroscopy and Sensing of Anhui University, and Ningbo Haier Xin Optoelectronic Technology Co., Ltd. published a paper titled "Measures of line strengths for NO2 near 6.2" μ Research paper on using a quantum cascade laser spectrometer.Re...

    2024-01-02
    Vedi traduzione