Italiano

Acta: Revealing the mechanism of defect formation in additive manufacturing

621
2025-02-21 15:13:01
Vedi traduzione

Main author: Yanming Zhang, Wentao Yana*
The first unit: National University of Singapore
Published Journal: Acta Materialia

Research background
Industry pain point: Although laser powder bed melting (LPBF) technology can manufacture complex components, the lack of consistent product quality is still the core bottleneck restricting its industrial application. Research has shown that up to 35% of process defects are directly related to powder splashing and entrainment.
Scientific challenge: Traditional experimental methods are difficult to capture microsecond level dynamic processes, and existing numerical models lack accurate descriptions of the gas liquid solid three-phase coupling effect, resulting in unclear mechanisms for defect formation.
Innovation breakthrough point: This study establishes for the first time a CFD-DEM-CALPHAD multi physics field coupling model, breaking through the limitations of traditional simulation methods in modeling phase transition kinetics and metallurgical reactions.

research contents 
Modeling method:
Coupling Computational Fluid Dynamics (CFD) and Discrete Element Method (DEM) to achieve bidirectional coupling between molten pool flow and powder motion
Integrate CALPHAD thermodynamic database to accurately describe metallurgical reactions in multi material systems
Develop a steam jet dynamic model to reproduce the microstructure evolution of Knudsen layer


Figure 1: Schematic diagram of computational domain and mesh.


Experimental verification:
Adopting multiple material systems such as 316L stainless steel and NiTi alloy
Combining high-speed schlieren imaging with ultrafast X-ray observation technology
Build a 4 million grid computing domain, with a single case computation time of 7 days (i9-12900K)


Figure 2: Multiphase flow in the melting process.


Research results
Thermal Splash Dynamics:
70% of the splashing comes from the molten powder in the steam jet zone (Type I)
20% is generated by sudden fragmentation of the molten pool (Type II)
10% from melt pool fluctuations (Type III)


Figure 3: Formation of hot spatters.


Defect formation mechanism:
150 μ m aggregates entering the laser action zone can lead to an 18% increase in porosity
The defect size of Ti particle inclusions in multi material LPBF reaches 45-80 μ m
Splashing momentum changes the flow field at the tail of the molten pool, causing element segregation (Ni segregation degree reaches 62%)


Figure 4: Large agglomeration formed by the coalescence of hot spatters.


Defect criteria:
τ<τc
The critical time τ _c decreases from 157 μ s to 67 μ s as the scanning speed increases


Figure 5: “Chain reaction” of defects induced by large agglomerations.


Deep insight
▶  Technological innovation value:
Establish a fully coupled dynamic model of gas melt pool powder with a resolution of 6 μ m
Revealing the chain reaction mechanism of thermal splashing agglomeration ("defect avalanche" effect)
Propose a prediction criterion for particle inclusion defects based on metallurgical reaction kinetics

▶  Engineering application inspiration:
Developing online monitoring algorithm: implementing defect warning through real-time ratio of τ/τ _c
Optimizing inert gas flow field: controlling the spatial distribution of splashing and redeposition
Multi material process design: Avoiding the combination of liquid-solid phase inversion materials

▶  Current challenges:
The high fidelity model has a high computational cost (single orbit simulation takes 7 days)
The impact of cross airflow on actual working conditions has not been modeled yet
Ultra fine powder (<20 μ m) motion trajectory prediction deviation>12%

▶  Future direction:
Developing GPU accelerated heterogeneous computing framework
Study on the metallurgical behavior of splash matrix interface
Exploring new technologies for controllable utilization of splashes (such as in-situ alloying)

Source: Yangtze River Delta Laser Alliance

Raccomandazioni correlate
  • Iron Triangle releases fiber Bragg gratings and arrays based on multi-core fibers

    T35 multi-core fiber grating and T103 multi-core fiber grating arrays can be engraved into all fiber cores in physical locations, or only onto certain fiber cores.They can also have the same wavelength, or they can have all different wavelengths at the same physical location along the fiber or at different physical locations along the fiber.T35 and T103 are very suitable for projects that require...

    2023-10-28
    Vedi traduzione
  • The Science Island team has made breakthroughs in high pulse energy mid infrared fiber transmission

    Recently, the Jiang Haihe Research Group of the Health Institute of the Chinese Academy of Sciences Hefei Institute of Materia Medica made important progress in the research of the high-energy pulsed laser transmission system in the mid infrared band, and designed a 78 μ The 6-hole microstructure anti resonant hollow core fiber (AR-HCF) with a larger core diameter achieved efficient transmissio...

    2024-03-23
    Vedi traduzione
  • Artists transform paper into meticulous laser cutting designs

    In the past few years, paper artists have demonstrated the versatility of their common fiber materials. Some people manually cut or carve paper, while others combine traditional craftsmanship with digital design. Ibbini Studio is in this situation. Abu Dhabi artist Julia Ibni collaborated with computer scientist Stephen Noye to create sculptural paper works inspired by decorative patterns such as ...

    2024-01-23
    Vedi traduzione
  • Synchrotron X-ray imaging technology

    According to a recent study published in the journal Science Advances, it reveals how early mammals grew and developed during critical periods of their long 'life history'. A research team including Queen Mary University of London used synchrotron X-ray tomography technology to image the growth rings in fossilized tooth roots, in order to infer the lifespan, growth rate, and even sexual maturity t...

    2024-08-15
    Vedi traduzione
  • Laser Photonics Corporation sets high growth strategy for 2025

    Recently, laser cleaning equipment manufacturer Laser Photonics Corporation (LPC) announced its ambitious 2025 growth strategy, emphasizing innovation, strategic investment, and market expansion. LPC Executive Vice President John Armstrong stated:With a solid foundation laid in 2024, we will enter 2025 with clear momentum and a firm focus on growth. The progress we made last year - strengthening...

    01-20
    Vedi traduzione