Italiano

The United States has successfully developed a full 3D printed electric spray engine

590
2025-02-20 15:02:34
Vedi traduzione

The fully 3D printed electric spray engine is suitable for small satellite in orbit maneuver, and its production cost is only a small part of that of traditional thrusters.


Image source: Massachusetts Institute of Technology, USA


The Massachusetts Institute of Technology team recently demonstrated an electric spray engine made entirely of 3D printing technology, which can be propelled by emitting droplets. This innovative device not only produces quickly, but also has a much lower cost than traditional thrusters. It utilizes commercially available 3D printing materials and technology, and can even complete printing in space. The relevant paper was published in the journal Advanced Science.

The working principle of the electric spray engine is to apply an electric field to the conductive liquid to generate a high-speed micro droplet jet to propel the spacecraft. This type of micro engine is particularly suitable for small satellites, such as cube satellites. Compared with chemical fuel rockets, electric spray engines are more efficient in the use of propellants, so they are more suitable for performing precise in orbit maneuver tasks. Although the thrust generated is small, the required thrust level can be achieved by paralleling multiple electric spray launchers.

The team has developed a modular process that combines two 3D printing methods, solving the challenges encountered in manufacturing complex equipment composed of macroscopic and microscopic components. They use restoration photopolymerization printing (VPP) technology, including digital light processing technology, to shine light onto photosensitive resin through a chip sized projector and solidify layer by layer to form high-resolution 3D structures. In addition, they also designed a clamping mechanism to connect various components, ensuring the water tightness of the equipment. This allows astronauts to directly print satellite engines in space without relying on equipment sent from Earth.

The printed thruster contains 32 electric spray emitters, which work together to ensure stable and uniform propellant jet. The final prototype equipment is comparable to or even better than existing equipment in terms of thrust performance.

Further research has shown that by adjusting the pressure of the propellant and the voltage applied to the engine, the droplet flow rate can be controlled to achieve a wider range of thrust output.

The researchers said that this method simplified the system design, reduced the complex pipeline, valve or pressure signal network, and provided a more portable, economical and efficient electric spray propulsion solution.

The 3D printed electric spray engine can almost mark an important breakthrough in space propulsion technology. Due to its ability to produce quickly and customize, it can quickly adjust designs according to specific needs in space missions, greatly improving execution flexibility and response speed. Especially in emergency repairs or the need for rapid deployment of new satellites, this immediate production capability is particularly important. Being able to directly manufacture engines in space means that future space missions will no longer rely solely on equipment sent from Earth, but will be able to self repair and upgrade in orbit. Therefore, this innovation not only significantly reduces production costs and time, but also brings more flexible and efficient solutions for future space exploration.

Source: laserfair

Raccomandazioni correlate
  • The influence of post-processing methods on the fatigue performance of materials prepared by selective laser melting

    Researchers from Opole University of Technology in Poland have reported the latest progress in studying the effect of post-processing methods on the fatigue performance of materials prepared by selective laser melting (SLM). The related research was published in The International Journal of Advanced Manufacturing Technology under the title "Influence of post processing methods on fatigue performan...

    01-17
    Vedi traduzione
  • Han's Laser New Product Debuts at 2025 Munich Shanghai Light Expo

    New product launch of "Blue Hurricane" red blue integrated laser1. Ultra high power: The "red blue integrated" laser, with optimized optical path design and heat dissipation system, can stably output power exceeding industry standards, meeting high demand application scenarios.2. Dual high brightness: Integrating advanced wavelength modulation technology and materials science, both red and blue l...

    03-07
    Vedi traduzione
  • Medical implant manufacturers have announced the launch of ultra-short pulse lasers for cutting applications

    Norman Noble, the world's leading contract manufacturer of next-generation medical implants, today announced the launch of the Noble STEALTH HP, an ultrashort pulse laser for the fabrication of innovative medical devices and implants.It is reported that the laser is mainly equipped with a high-power laser cutting system, which can achieve high-quality cutting results without heat affected zone (HA...

    2023-09-12
    Vedi traduzione
  • Zhejiang University has prepared ultra strong and tough 3D printing elastic materials

    Professor Xie Tao and researcher Wu Jingjun from the School of Chemical Engineering and Biotechnology at Zhejiang University have designed a new type of photosensitive resin and used it to create a "super rubber band" that can stretch to over 9 times its own length and lift 10 kilograms of objects with a "body" with a diameter of 1 millimeter through 3D printing. The relevant results were recently...

    2024-07-06
    Vedi traduzione
  • Scientists simulate the conditions that allow photons to collide with photons by using lasers

    As far as quantum physics is concerned, one of the most striking predictions is that matter can be produced entirely from light (i.e., photons). Pulsars are an example of an object capable of achieving this feat.In a recent study reported in the journal Physical Review Letters, a research team led by scientists at Osaka University simulated the conditions that allow photons to collide with photons...

    2023-08-11
    Vedi traduzione