Italiano

Overview of ultrafast laser micro nano manufacturing technology: material processing, surface/interface control, and device manufacturing

424
2024-08-06 14:36:08
Vedi traduzione

Researchers from Tsinghua University have summarized the research on ultrafast laser micro nano manufacturing technology, including material processing, surface/interface control, and device manufacturing. The relevant review titled "A Review of Ultrafast Laser Micro/Nano Fabric: Material Processing, Surface/Interface Control, and Device Fabric" was published in Nano Research.

Ultra fast laser processing technology provides a wide range of application opportunities in micro nano manufacturing, nanotechnology, biotechnology, energy science, photonics, and other fields due to its controllable processing accuracy, diverse processing capabilities, and extensive material adaptability. The processing capability and application of ultrafast lasers still need further exploration. In the field of material processing, controlling the atomic scale structure of nanomaterials is challenging. There are complex effects in ultrafast laser surface/interface processing, making it difficult to modulate the nanostructures and properties of the surface/interface as needed. In the process of ultrafast laser manufacturing of micro functional devices, the processing capability urgently needs to be improved. Here, researchers reviewed the research progress of ultrafast laser micro nano manufacturing in areas such as material processing, surface/interface control, and micro functional device manufacturing. Several useful ultrafast laser processing methods and applications in these fields were introduced. Ultra fast laser processing technology has various processing effects and capabilities, and has shown application value in multiple fields from science to industry.

Figure 1 Overview of ultrafast laser micro nano processing structure schematic diagram


Figure 2 Reshaping of Metal Nanomaterials Induced by Ultrafast Laser


Figure 3 Ultrafast laser-induced ablation of metal nanomaterials


Figure 4 Ultra fast laser plasma nanomachining of multifunctional structures with photoresponsive properties


Figure 5 Formation of surface dislocation layer under femtosecond laser irradiation


Figure 6 Laser Induced Coffee Ring Structure for Color Printing


Figure 7 Strong metal carrier interaction induced by ultrafast laser


Figure 8 Ultrafast laser induces bubble enhanced fluorescence in dye solution


Figure 9 Optical Metasurfaces Prepared by Near Field Enhanced Ultrafast Laser Processing Method


Figure 10 Using a multi beam ultrafast laser to fabricate photonic crystals and subwavelength gratings


Figure 11 Preparation of Nanogap Graphene Supercapacitors by Ultrafast Laser Bessel Beam Processing


Figure 12 Ultrafast Laser Induced Carbonization from Carbonation Points


Figure 13 Preparation of hybrid supercapacitors using MoCl5 assisted carbonization method based on ultrafast laser

This article reviews the research progress of ultrafast laser micro nano processing technology in material processing, surface/interface control, and functional device manufacturing. These research results demonstrate the extensive material processing capabilities of ultrafast lasers, from altering the internal atomic structure of nanomaterials to manipulating the properties of material surfaces/interfaces. By adjusting the energy deposition of ultrafast laser processing, different processing effects on nanomaterials can be achieved, including reshaping, ablation, and interconnection. Ultrafast lasers provide an effective method to control the properties of material surfaces/interfaces, thereby achieving the construction of surface structures, impact strengthening, and strong metal carrier interactions. In addition, this technology can also produce micro functional devices, including photonic crystal devices, optical components, and electronic devices. These advances demonstrate the potential of ultrafast laser processing in both scientific and industrial fields. Ultrafast laser processing technology is still rapidly developing and will play a more important role in micro nano manufacturing in the future, bringing changes to multiple application fields.

Source: Yangtze River Delta Laser Alliance

Raccomandazioni correlate
  • Commitment to achieving 100 times the speed of on-chip lasers

    Although lasers are common in daily life, their applications go far beyond the scope of light shows and barcode reading. They play a crucial role in telecommunications, computer science, and research in biology, chemistry, and physics. In the latter field, lasers that can emit extremely short pulses are particularly useful, approximately one trillionth of a second or less.By operating these lasers...

    2023-11-13
    Vedi traduzione
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong lasers and matter, short pulse width and high energy electrons are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite ultrafast electromagnetic radiation in a wide range of wavelengt...

    2024-06-21
    Vedi traduzione
  • The research team has solved decades long challenges in the field of microscopy

    When observing biological samples under a microscope, if the medium in which the objective lens is located is different from the sample, the light beam will be interfered with. For example, when observing a water sample with a lens surrounded by air, the light bends more strongly in the air around the lens than in water.This interference can cause the measured sample depth to be smaller than the a...

    2024-04-27
    Vedi traduzione
  • IPG launches dual beam fiber laser for additive manufacturing applications

    Recently, American fiber laser giant IPG Photonics announced the launch of a new laser series specifically designed for the additive manufacturing field.The highlight of this series of lasers lies in its integration of IPG's unique dual beam technology, which can independently regulate and simultaneously emit core and ring beams, setting a new benchmark in accuracy, efficiency, and reliability.Ba...

    2024-11-25
    Vedi traduzione
  • NUBURU Announces Second Next Generation Blue Laser Space Technology Contract with NASA

    NUBURU, the leading innovator of high-power and high brightness industrial blue laser technology, announced today that it has been awarded a second phase contract worth $850000 by the National Aeronautics and Space Administration (NASA) to advance blue laser power transmission technology as a unique solution that significantly reduces the size and weight of equipment required for lunar and Martian...

    2024-05-13
    Vedi traduzione