Italiano

The new generation of special optical fibers is suitable for the application of quantum technology

525
2024-08-02 14:35:47
Vedi traduzione

Recently, physicists from the University of Bath in the UK have developed a new generation of specialized optical fibers to address the data transmission challenges of the future quantum computing era. This achievement is expected to promote the expansion of large-scale quantum networks. The research results were published in the latest issue of Applied Physics Letters Quantum.

The highly anticipated aspect of quantum technology is that it can enable people to solve complex logical problems and develop new drugs with unprecedented computing power. At the same time, quantum technology can also bring more secure communication to people by providing unbreakable encryption technology. However, due to the solid core of optical fibers, wired networks that transmit information globally today are not suitable for future quantum communication.

Bright light is transmitted through newly designed optical fibers
The wavelength of light transmitted through traditional optical fibers is determined by the loss of quartz glass. These wavelengths are incompatible with the operating wavelengths of single photon sources, quantum bits, and active optical components required for optical quantum technology. Therefore, researchers must develop support devices that are different from what is currently available in order to ensure their effectiveness in future quantum networks.

This time, researchers from the University of Bath analyzed the relevant challenges of quantum Internet from the perspective of optical fiber technology, and proposed a series of solutions to achieve robust, large-scale scalability of quantum networks, including optical fibers for long-distance communication and special optical fibers that allow quantum repeaters. The newly manufactured special optical fiber is different from standard telecommunications optical fiber in that it has a microstructure core composed of complex air pocket patterns distributed along the entire length of the fiber. These patterns enable people to manipulate the properties of light inside the fiber, create entangled photon pairs, change the color of photons, and even capture individual atoms inside the fiber.

The research team introduced that special optical fibers can achieve quantum computing at the node itself by acting as entangled single photon sources, quantum wavelength converters, low loss switches, or quantum memory containers. Meanwhile, special optical fibers can be directly integrated into the network, greatly extending the operational distance.

The new type of optical fiber can also generate more unique quantum states of light, which can be applied in quantum computing, precision sensing, and information encryption, laying the foundation for large-scale applications of quantum computers in the future.

Source: Network

Raccomandazioni correlate
  • Romania Center launches the world's most powerful laser

    Are you ready? The signal is out! "In the control room of a research center in Romania, engineer Antonio Toma has activated the world's most powerful laser, which is expected to make revolutionary progress in various fields from the health sector to space. The laser located in the center near the Romanian capital Bucharest is operated by the French company Thales and utilizes the invention of Nobe...

    2024-04-01
    Vedi traduzione
  • Construction of Advanced New Laser Research Centers in American Universities

    The ATLAS R&D center is expected to be completed by mid-2026!A powerful new laser research facility located on the Foothills campus of Colorado State University will begin construction this month. The facility is planned to be put into use in mid-2026 and is the result of 40 years of laser development research at Colorado State University. It is a collaboration with the Fusion Energy Science P...

    2024-10-30
    Vedi traduzione
  • Ecken develops a new type of iron silicon powder for 3D printing of motors

    Through the SOMA project funded by the European Union, organic silicon material expert Aiken has collaborated with research partners and clients to develop a new specialized iron silicon powder that can more efficiently 3D print motor components.Yesterday's electric motor was usually made by cutting and shaping parts from a metal plate. 3D printing can fundamentally improve efficiency and...

    2024-01-20
    Vedi traduzione
  • Shanghai Institute of Optics and Mechanics proposes a new scheme of Er doped silicate fiber as an extended L-band broadband amplifier

    Recently, Hu Lili, a research group of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new scheme based on field strength optimization of Er doped silicate fiber as an extended L-band broadband amplifier. Relevant research achievements were published in Optics Letters under the tit...

    2024-06-05
    Vedi traduzione
  • An optical display technology based on mechanical optical mechanism

    The optical properties of afterglow luminescent particles in mechanical quenching and mechanical luminescence have aroused great interest in various technological applications. However, for specific photon applications, clearer explanations are needed for these unusual events.Recently, scientists from Pohang University of Science and Technology have designed an optical display technology with ALP ...

    2024-03-12
    Vedi traduzione