Italiano

New type of femtosecond laser: used for broadband terahertz generation and nonlinear wafer detection

711
2024-06-26 13:51:22
Vedi traduzione

Recently, HüBNER Photonics, the leading manufacturer of high-performance lasers, has launched the latest member of the VALO femtosecond series - VALO Tidal. This laser not only represents a major leap in the fields of imaging, detection, and analysis, but also demonstrates the infinite possibilities of laser technology with its outstanding performance.

The VALO Tidal femtosecond laser typically shortens its pulse duration to 40 femtoseconds and achieves an output power of up to 2 watts, which is unprecedented in the industry. This breakthrough progress is attributed to the proprietary fiber laser technology of the VALO femtosecond series lasers. The perfect combination of linear and nonlinear effects enables the optical bandwidth to far exceed the gain bandwidth, providing users with unparalleled performance experience.

The design of this laser is ingenious, generating clean and ultrafast light pulses through passive cooling. Its pulse duration is less than 50 femtoseconds, with a peak power level of up to 2 megawatts, demonstrating its outstanding performance advantages. In addition, the wide spectral bandwidth of VALO Tidal covers 1000 to 1100 nanometers, making it an ideal choice for second and third harmonic imaging.

Not only that, VALO Tidal is also equipped with an integrated dispersion pre compensation unit, allowing users to fully utilize its excellent peak power and wide spectrum bandwidth. This feature is not only applicable to most nonlinear applications, such as high harmonic imaging and broadband terahertz generation, but also to fields such as nonlinear wafer detection. The launch of VALO Tidal will undoubtedly bring a revolution to imaging technology, driving research and application in related fields to new heights.

Source: OFweek

Raccomandazioni correlate
  • Ultra short pulse laser technology shines a sword, winning 3.5 million euros in financing

    Recently, Italian startup Lithium Lasers announced that the company has successfully raised 3.5 million euros in ultra short pulse laser technology.This company, founded in 2019, focuses on developing an ultra short pulse laser (USPL) called FemtoFlash, which is aimed at multiple industries such as aerospace, healthcare, automotive, and consumer electronics, particularly suitable for material proc...

    2024-04-26
    Vedi traduzione
  • Polarization of Laser Writing Waveguides Controlled by Liquid Crystal

    German researchers have developed a method for controlling and manipulating optical signals by embedding liquid crystal layers into waveguides created by direct laser writing. This work has produced devices capable of electro-optic control of polarization, which may open up possibilities for chip based devices and complex photonic circuits based on femtosecond write waveguides.Researcher Alexandro...

    2024-03-13
    Vedi traduzione
  • Fraunhofer ISE develops a faster laser system for wafer processing

    By using a new type of laser, the processing speed of wafers can be 10 to 20 times faster than before. This is the result of a research project at the Fraunhofer Institute for Solar Systems in Germany.Researchers have developed a prototype that can use ultraviolet waves to carve the most intricate structures on silicon wafers. The new system concept enables solar cell manufacturers to perform lase...

    2023-12-23
    Vedi traduzione
  • Outstanding Optical Technologies at the 2025 Western Optoelectronics Exhibition in the United States

    In the long history of technological development, every major breakthrough in technology is like a shining star, illuminating the path forward for humanity. At the Photonics West conference in 2025, numerous breakthroughs in cutting-edge photonics technologies attracted the attention of the global academic and industrial communities. Several important technological advancements reported in this ex...

    02-12
    Vedi traduzione
  • New two-photon aggregation technology significantly reduces the cost of femtosecond laser 3D printing

    Scientists at Purdue University in the United States have developed a new type of two-photon polymerization technology. This technology cleverly combines two lasers and utilizes 3D printing technology to print complex high-resolution 3D structures while reducing femtosecond laser power by 50%. It helps to reduce the cost of high-resolution 3D printing technology, thereby further expanding its appl...

    2024-07-05
    Vedi traduzione