Italiano

Making Infrared Light Visible: New Equipment Utilizes 2D Materials to Convert Infrared Light

334
2024-06-24 11:13:56
Vedi traduzione

Infrared imaging and sensing technology can be used in various fields, from astronomy to chemistry. For example, when infrared light passes through a gas, sensing changes in light can help scientists identify specific properties of the gas. The use of visible light may not always achieve this sensing.

However, existing infrared sensors are bulky and inefficient. In addition, due to the use of infrared sensors in the field of national defense, they are also subject to export restrictions. Therefore, there is an urgent need to develop localized and efficient equipment.

The method adopted by the IISc team is to feed the input infrared signal and pump beam together into the mirror stack. The nonlinear optical properties of the materials that make up the mirror stack can cause frequency mixing, resulting in an output beam with increased frequency (up conversion), while other characteristics remain unchanged. Using this method, they were able to convert infrared light with a wavelength of approximately 1550 nanometers upwards into visible light with a wavelength of 622 nanometers. The output light waves can be detected using traditional silicon-based cameras.

"This process is coherent - the characteristics of the input beam are preserved at the output end. This means that if a specific pattern is printed on the input infrared frequency, it will automatically transfer to the new output frequency," explained Varun Raghunathan, Associate Professor of Electronic Communication Engineering (ECE) and corresponding author of this research report published in Laser&Photonics Reviews.

The main author Jyothsna KM is calibrating the beam for the upconversion experiment
He added that the advantage of using gallium selenide lies in its high optical nonlinearity, which means that a single photon of infrared light and a single photon of the pump beam can combine to form a single photon with an upconversion frequency.

The research team can even use a thin layer of gallium selenide with a size of only 45 nanometers to achieve up conversion. Compared to traditional devices that use centimeter sized crystals, this small-sized device is more cost-effective. The study also found that its performance can be comparable to the most advanced upconversion imaging systems currently available.

The first author and doctoral student at the European School of Electronic Engineering, Jyothsna K Manattayil, explained that they used particle swarm optimization algorithms to accelerate the calculation of the required correct layer thickness. The wavelength that can be converted upwards through gallium selenide varies depending on the thickness. This means that the material thickness needs to be adjusted according to the application situation.

She said, "In our experiment, we used 1550 nanometers of infrared light and 1040 nanometers of pump beam. However, this does not mean that it cannot be used for other wavelengths. We see that performance does not decrease at various infrared wavelengths ranging from 1400 nanometers to 1700 nanometers."

Looking ahead, researchers plan to expand their work to upconvert longer wavelengths of light. They also attempted to improve the efficiency of the equipment by exploring other stacking geometries.

Raghunathan said, "The world is very interested in conducting infrared imaging without using infrared sensors, and our work may change the game rules of these applications.".

Related links: https://phys.org/news/2024-06-infrared-visible-device-2d-material.html
Paper link: https://dx.doi.org/10.1002/lpor.202400374

Source: Guangxing Tianxia

Raccomandazioni correlate
  • Quantum droplets reveal a new field of macroscopic complexity

    Scientists have advanced this field by stabilizing exciton polaritons in semiconductor photonic gratings, achieving long-lived and optically configurable quantum fluids suitable for complex system simulations.Researchers from Leicester CNR Nanotec and the School of Physics at the University of Warsaw used a new generation of semiconductor photonic gratings to optically customize the composite of q...

    2024-03-28
    Vedi traduzione
  • Experimental verification of driving pressure enhancement and smoothing for hybrid driven inertial confinement fusion on a 100 kJ laser device

    The research teams from the Laser Fusion Research Center of the Chinese Academy of Engineering Physics, the Beijing Institute of Applied Physics and Computational Mathematics, Peking University, and Shenzhen University of Technology reported experimental verification of the driving pressure enhancement and smoothing of hybrid driven inertial confinement fusion on a 100 kJ laser equipment.The relev...

    2023-09-25
    Vedi traduzione
  • Redefining the Future of Sensing: In depth Study of Novel Plasma Waveguide Structures

    Imagine in such a world, the detection of trace substances is not only fast, but also incredibly accurate, indicating a new era of technological progress in health, safety, and environmental monitoring. Due to pioneering research on plasma waveguide structures, this vision is becoming increasingly realistic, aimed at enhancing refractive index sensing and spectral filtering. This innovative method...

    2024-03-04
    Vedi traduzione
  • Laser&Photonics Reviews New Type Quartz Crystal Space Harmonic Modulation for Efficient Vacuum UV Laser

    Professor Zhang Huaijin and Yu Haohai from the Institute of Crystal Materials of Shandong University (the State Key Laboratory of Crystal Materials) proposed a spatial harmonic modulation strategy, which realizes the phase matching conditions that can be manipulated artificially in the new quartz crystal, and realizes the effective frequency doubling within the VUV range. The relevant research is ...

    2023-08-30
    Vedi traduzione
  • Trumpf China 25 Years: From Model Factory to Global Strategic Fortress

    On March 14, 2000, Trumpf established its first company in China - Trumpf Metal Sheet Products Co., Ltd., headquartered in Taicang, 50 kilometers northwest of Shanghai. Nowadays, Taicang has become a global strategic stronghold for the company. 25 years ago, this production base was originally used to demonstrate sheet metal processing production for Chinese enterprises. In the seventh year afte...

    03-26
    Vedi traduzione