Italiano

MIT researchers have demonstrated a novel chip based resin 3D printer

519
2024-06-17 15:22:09
Vedi traduzione

Researchers from the Massachusetts Institute of Technology and the University of Texas at Austin showcased the first chip based resin 3D printer. Their concept verification tool consists of a millimeter sized photon chip that emits a programmable beam of light into resin holes, which solidify into a solid structure when exposed to light.

The prototype processor does not have mobile components, but uses a series of small optical antennas to guide the beam of light. The beam is projected upwards into the liquid resin, which is carefully designed to quickly cure when exposed to the visible wavelength of the beam.
By integrating silicon photonics and photochemistry, interdisciplinary research teams can demonstrate a chip that can guide a beam of light to 3D print any two-dimensional design, including the letters M-I-T. The shape can be fully constructed within seconds.

Silicon Photonics and Special Resins
The Notaros group, which specializes in silicon photonics, has created an integrated optical phased array device that uses a microscale antenna on a chip to guide a beam of light. They can change the optical signals on both sides of the antenna array to control the beam of light. These systems are crucial for LiDAR sensors, which use infrared light to measure the surrounding environment. Recently, the group has shifted its focus to devices that generate and guide visible light for augmented reality applications.

Around the same time as they began brainstorming, the Page team at the University of Texas at Austin developed for the first time a specialized resin that could rapidly cure using visible light wavelengths. This is the missing part that makes chip based 3D printers a reality.
Corsetti added, "Here, we manufacture this chip based 3D printer by using visible light curing resin and visible light emitting chips, meeting between standard photochemistry and silicon photonics. You integrate the two technologies into a completely new idea.".

Chip based resin 3D printer
Their prototype consists of a photonic chip with a 160 nanometer optical antenna array. The thickness of a piece of paper is about 100000 nanometers. The entire chip is suitable for a quarter of the United States.

When driven by an off chip laser, the antenna guides the controllable visible beam into the holes of the photocured resin. The chip is located below a transparent glass slide, similar to the glass slide used in a microscope, which has a small depression that can capture resin. Researchers use electrical pulses to guide laser beams in a non mechanical manner, making the resin harden at any point of impact.

The Page team at the University of Texas at Austin works closely with the Notaros team at the Massachusetts Institute of Technology to fine tune chemical combinations and concentrations to achieve a formula with a long shelf life and solidification.
Finally, scientists have demonstrated that their prototype can 3D print any two-dimensional shape in just a few seconds.

expectation
In the long run, researchers envision a system where a photon chip is located at the bottom of a resin well and creates a 3D hologram of visible light, thereby solidifying a complete object in one step.
This type of portable 3D printer can have a wide range of applications, including allowing doctors to build customized medical device components and engineers to create rapid prototypes in the workplace.

This study received partial support from the National Science Foundation, the Defense Advanced Research Projects Agency, the Robert Welch Foundation, the MIT Rolf G. Rocher Endowment Scholarship, and the MIT Frederick and Barbara Croning Scholarship.

Source: Laser Net

Raccomandazioni correlate
  • BLT launches a new BLT-S800 metal PBF 3D printer equipped with 20 lasers

    Bright Laser Technologies (BLT), a global leader in additive manufacturing headquartered in China, has launched a new BLT-S800 metal 3D printer with a super large construction volume (800 mm x 800 mm x 600 mm) and a 20 fiber laser configuration, which can shorten part delivery time and achieve rapid customer manufacturing.The BLT-S800 system supports titanium alloy, aluminum alloy, high-temperatur...

    2023-10-19
    Vedi traduzione
  • Huagong Technology: Exploring the "Laser+" Strategy to Deliver the Powerful Productivity of Laser and Intelligent Manufacturing to Various Parts of the World

    What is the power of a beam of light? If light is used in the manufacturing field, its highest accuracy can reach one percent of the diameter of a hair thread, which is why it is called the "brightest light", "most accurate ruler", and "fastest knife". From airplanes and ships to kitchens and electrical appliances, lasers are widely used as advanced processing tools in all aspects of equipment man...

    2023-10-12
    Vedi traduzione
  • Continuation of the Term of President and CEO of Jena Germany

    Recently, the supervisory board of Jenoptik, a leading German laser technology company, announced an important decision: to extend and confirm the term of Dr. Stefan Traeger as Chairman of the Executive Board, with a new term of three years starting from July 1, 2025, and the contract validity period correspondingly extended to June 30, 2028. Dr. Stefan Traeger has been serving as the President ...

    2024-09-06
    Vedi traduzione
  • On demand ultra short laser flash: controllable optical pulse pairs from a single fiber laser

    Set up a dual comb fiber laser oscillator, external pulse combination, and real-time detection.In innovative methods for controlling ultra short laser flashes, researchers from Bayreuth University and Konstanz University are using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse inter...

    2024-01-12
    Vedi traduzione
  • Scientists propose new methods to accelerate the commercialization of superlens technology

    Superlenses are nano artificial structures that can manipulate light, providing a technique that can significantly reduce the size and thickness of traditional optical components. This technology is particularly effective in the near infrared region, and has great prospects in various applications, such as LiDAR, which is called "the eye of autonomous vehicle", mini UAV and blood vessel detector.D...

    2024-03-29
    Vedi traduzione