Italiano

Microscopic Marvel photon devices have the potential to completely change the way physics and lasers are processed

201
2024-06-04 15:20:04
Vedi traduzione

Researchers at Rensselaer Institute of Technology have developed a device that operates at room temperature, which is the first topological quantum simulator to operate under strong light matter interaction mechanisms, making high-tech research easier in cutting-edge ways.

Researchers at Rensselaer Institute of Technology have developed a device no larger than human hair, which will enable physicists to explore the fundamental concepts of matter and light. This study, published in the journal Nature Nanotechnology, can also help researchers develop more efficient lasers that are being used in a range of fields such as medicine and manufacturing.

This device is composed of a specific material called photonic topological insulator, which can guide photons (wave shaped particles formed into light) to specially designed interfaces without dispersing them in the material.

Topological insulators can simulate the behavior of multiple photons in a coherent manner, enabling them to act as micro laboratories to study quantum phenomena at very small scales.

Professor RPI and senior author of Natural Nanotechnology, Wei Bao, pointed out that our photonic topological insulator is a significant breakthrough in the field of fundamental physics. Its unique design allows materials to operate at room temperature, which was previously a challenge due to expensive equipment.

Our progress in energy-saving lasers has led to a seven fold increase in energy demand for room temperature equipment, which is much higher than previously developed low-temperature equipment.
RPI scientists have designed a new mechanism that utilizes the same techniques as in semiconductor manufacturing, involving atomic and molecular layers to create appropriate structures.

Our progress in energy-saving lasers has led to a seven fold increase in energy demand for room temperature equipment, which is much higher than previously developed low-temperature equipment.

RPI scientists have designed a new mechanism that utilizes the same techniques as in semiconductor manufacturing, involving atomic and molecular layers to create appropriate structures.

The device was manufactured by researchers who grew ultra-thin plates of halide perovskite, a crystal containing cesium, lead, and chlorine, and produced a polymer on it. They sandwiched these crystal plates and polymers between thin sheets of different oxide materials to create an object approximately 2 microns thick and 100 microns wide, which is roughly the same length and width as ordinary human hair.

When researchers applied lasers to devices, they observed a triangular pattern that lit up at the interface designed in the material. This mode is caused by the topology characteristics of the laser determined by the device design.

Shekhar Garde, Dean of the RPI School of Engineering, emphasized the prospects of studying quantum phenomena at room temperature.
The study of atmospheric carbon capture in the Mesozoic volcanic regions of central China is the main topic discussed in Nature Nanotechnology. The title of this paper is "The Cohesive Phenomenon in Topological Valley Halls".
Funding from the National Science Foundation and the Office of Naval Research has played an important role in funding this research.

Source: Laser Net

Raccomandazioni correlate
  • Scientists at St. Andrews University have made significant breakthroughs in compact laser research

    Scientists at St. Andrews University have made significant breakthroughs in compact laser research after decades of hard work.Laser is widely used in fields such as communication, medicine, measurement, manufacturing, and measurement around the world. They are used to transmit information on the internet, for medical purposes, and even in facial scanners on mobile phones. Most of these lasers are...

    2023-10-04
    Vedi traduzione
  • Coherent Company Announces the Launch of High Power Non Cooled G10 Pumped Laser Module for Submarine and Ground Applications

    Coherent, a leading supplier of high-performance optical network solutions, announced today the launch of a new high-power non cooled pump laser module based on the latest G10 series semiconductor laser tube technology. These new modules are specifically developed for high reliability submarine applications as well as single chip and dual chip ground applications.The new non cooled pump laser modu...

    2024-03-23
    Vedi traduzione
  • ZLDS100, a British high frequency laser displacement sensor, monitors multipoint vibration of silencers

    A muffler is a key component of a car's exhaust system, designed to reduce noise levels and emissions. The vibration of a muffler can have a significant impact on its performance and life. In order to understand the performance and behavior of the muffler, it is necessary to make multi-point vibration measurement. First, it enables engineers to assess the structural integrity and durability of a m...

    2023-08-04
    Vedi traduzione
  • Important Discovery in Aluminum Alloy Laser Coaxial Fusion Additive Manufacturing

    Aluminum alloy has unique advantages such as lightweight, high strength, and excellent corrosion resistance, and is highly favored in the aerospace manufacturing field. Laser Coaxial Fusion Additive Manufacturing (LCWAM) adopts beam shaping technology, which uses wire as the deposition material to melt and stack layer by layer. Compared to traditional side axis wire feeding technology, laser coaxi...

    2024-04-29
    Vedi traduzione
  • New method doubles and accelerates thermal tuning of optical chips, supporting two current and voltage regulation methods

    Silicon based quantum chip technology is one of the hot research directions in the field of integrated photonics. Thanks to compatibility with CMOS technology and silicon material characteristics, silicon-based integrated optical chips and devices have many advantages such as low cost, small size, low power consumption, and high integration, providing an ideal platform for large-scale optical comp...

    2024-04-02
    Vedi traduzione