Italiano

Laser induced magnetic generation of non-magnetic materials at room temperature helps to develop faster and more energy-efficient information transmission and storage technologies

556
2024-06-03 14:38:18
Vedi traduzione

Researchers from the University of Stockholm in Sweden, the Nordic Institute for Theoretical Physics, and the University of Cafoscari in Venice, Italy have successfully demonstrated for the first time how lasers induce quantum behavior at room temperature and make non-magnetic materials magnetic. This breakthrough is expected to pave the way for faster and more energy-efficient computers, information transmission, and data storage. The study was published in the latest issue of the journal Nature.

The research team placed a quantum material strontium titanate in a short and intense laser beam with special wavelength and polarization, generating induced magnetism. This method allows light to move atoms and electrons in the material in a circular motion, generating an electric current and making it magnetic like a refrigerator magnet.

Researchers have achieved this by developing a new far-infrared light source. This light source has polarization in the shape of a bottle opener. This is the first time they have been able to induce and clearly see how materials become magnetic at room temperature in an experiment.

Magnets are usually made of metal, and new methods allow for the use of many insulators to manufacture magnetic materials. This breakthrough is expected to be widely applied in various information technologies, opening the door to the development of ultrafast magnetic switches, information transmission and data storage, as well as faster and more energy-efficient computers.

The research results have been replicated in several other laboratories. A paper in the same issue of Nature suggests that this method can be used to write and store magnetic information, opening a new chapter in the design of new materials using light.

The researchers are in the laboratory of Stockholm University. Image source: Magnus Bergstrom/Knut and Alice Wallenberg Foundation

Source: Science and Technology Daily

Raccomandazioni correlate
  • TRUMPF utilizes a laser driven X-ray source to improve electric vehicle batteries

    In the future, electric vehicle battery manufacturers can further improve the durability and performance of electric vehicle batteries through compact X-ray sources. The XProLas development partnership has now begun to develop these laser driven X-ray sources under the leadership of TRUMPF. The first batch of demonstration systems will be completed in 2026. In the future, manufacturers will be abl...

    2024-03-01
    Vedi traduzione
  • Magdalena Ridge expands the capacity of optical interferometers

    The Magdalena Ridge Observatory has purchased a second-generation off-axis beam compressor from Optical Surface, which will expand the functionality of the facility's optical interferometer.Interferometer is a research tool that combines two or more light sources to create interference patterns that can be measured and analyzed. In astronomy, interferometers combine the light collected by multiple...

    2024-01-05
    Vedi traduzione
  • Webasto joins hands with Tongkuai to lead the new trend of electric vehicle technology

    In the process of selecting electric vehicles, the effectiveness of the heating system is often overlooked. However, this system is crucial for providing a warm and comfortable driving environment and removing frost and fog from winter windows. More importantly, it can also improve battery efficiency, as the battery performs best within a specific temperature range.Unlike internal combustion engin...

    2024-06-12
    Vedi traduzione
  • Micro ring resonators with enormous potential: hybrid devices significantly improve laser technology

    The team from the Photonic Systems Laboratory at the Federal Institute of Technology in Lausanne has developed a chip level laser source that can improve the performance of semiconductor lasers while generating shorter wavelengths.This groundbreaking work, led by Professor Camille Br è s and postdoctoral researcher Marco Clementi from the Federal Institute of Technology in Lausanne, represe...

    2023-12-11
    Vedi traduzione
  • Focusing on Lithuanian solid-state and fiber laser manufacturer EKSPLA

    In this interview, Dr. Antonio Castelo, EPIC Biomedical and Laser Technology Manager, had a conversation with Aldas Juronis, CEO of EKSPLA, a Lithuanian innovative solid-state and fiber laser manufacturer.What is the background of your appointment as the CEO of EKSPLA?In 1994, I graduated from Kaonas University of Technology in Lithuania with a Bachelor's degree in Radio Electronic Engineering. At...

    2023-11-07
    Vedi traduzione