Italiano

Progress in the Study of Nonlinear Behavior of Platinum Selenide Induced by Strong Terahertz at Shanghai Optics and Machinery Institute

474
2024-05-23 14:28:07
Vedi traduzione

Recently, the research team of the State Key Laboratory of Intense Field Laser Physics of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research on the nonlinear behavior and mechanism of platinum selenide in terahertz band. The research team systematically studied the spectral and optical intensity characteristics of platinum selenide under strong terahertz pulse excitation, revealing two nonlinear processes dominated by the real and imaginary parts of nonlinear polarization. The related achievements were published in Optics Letters under the title "Terahertz triggered ultra fast non-linear optical activities in two dimensional centrosymmetric PtSe2".

Terahertz is an electromagnetic spectrum region between millimeter waves and infrared optics, and exploring potential materials for application in the terahertz band is crucial for the development of terahertz technology. The two-dimensional topological semi metallic platinum selenide exhibits excellent performance in terahertz generation and modulation due to its broadband photoresponse and photoelectric response characteristics. 
However, there is still a lack of systematic research on the basic nonlinear optical properties of platinum selenide under strong terahertz interaction. Therefore, exploring the nonlinear phenomena and underlying mechanisms of platinum selenide in the terahertz domain is of great significance.

In this study, the research team utilized ultrafast terahertz pumping infrared detection technology to investigate the interaction between terahertz pulses and platinum selenide thin films. The strong terahertz pulse breaks the inversion symmetry center of platinum selenide through nonlinear polarization and radiates a strong second harmonic signal using its nonlinear polarization real part effect. The time scale of the second harmonic signal is comparable to that of terahertz pulses, and it has a high signal-to-noise ratio and switching ratio, confirming that this property can be applied to terahertz modulation and logic gates. On the other hand, due to the effect of the imaginary part of nonlinear polarization, the conductivity of platinum selenide is modulated by strong terahertz, exhibiting a phenomenon of enhanced nonlinear absorption. This work reveals the nonlinear properties of platinum selenide in the terahertz region, achieving transient reversible inversion symmetry control of platinum selenide, and expanding the application potential of platinum selenide based two-dimensional materials in future optoelectronic devices and logic circuits.

The related work has received support from the National Natural Science Foundation of China and other organizations.

Figure 1 (a) Schematic diagram of terahertz pump infrared light detection system. (b) Waveform diagram of terahertz pump source. (c) Reflection spectra with and without terahertz pumping.

Figure 2 (a) Second harmonic spectrum of platinum selenide obtained under terahertz pumping infrared light detection system. (b) Comparison of the square of the terahertz waveform with the ultrafast dynamic process extracted at 725 nm. (c) The relationship between second harmonic signal strength and terahertz field strength. (d) Polarization properties of second harmonic signal intensity.

Figure 3 (a) The relationship between the transmittance of platinum selenide thin films and terahertz field strength. (b) The relationship between the conductivity of platinum selenide and terahertz field strength.

Source: Shanghai Institute of Optics and Precision Machinery

Raccomandazioni correlate
  • Meltio launches a new blue laser 3D printer M600

    Recently, metal 3D printing manufacturer Meltio launched its latest metal 3D printer - M600. This M600 has shown significant progress in integrating into industrial manufacturing processes, no longer limited to niche applications. Like most of Meltio's product lines, the design of M600 was originally intended to address common manufacturing issues such as long delivery times, high inventory cost...

    2024-07-06
    Vedi traduzione
  • Unlocking visible femtosecond fiber oscillators: progress in laser science

    The emergence of ultrafast laser pulses marks an important milestone in laser science, triggering astonishing progress in a wide range of disciplines such as industrial applications, energy technology, and life sciences. Among various laser platforms that have been developed, fiber optic femtosecond oscillators are highly praised for their compact design, excellent performance, and cost-effectiven...

    2024-03-28
    Vedi traduzione
  • Laser blasting promises to solve global plastic problem

    Recently, researchers announced the development of a way to use laser blasting to break down plastic and other material molecules into their smallest parts for future reuse.This method involves placing these materials on a two-dimensional material called transition metal dichalcogenides and then irradiating them with light.This discovery has the potential to improve the way we handle plastics that...

    2024-07-16
    Vedi traduzione
  • Han's Laser New Product Debuts at 2025 Munich Shanghai Light Expo

    New product launch of "Blue Hurricane" red blue integrated laser1. Ultra high power: The "red blue integrated" laser, with optimized optical path design and heat dissipation system, can stably output power exceeding industry standards, meeting high demand application scenarios.2. Dual high brightness: Integrating advanced wavelength modulation technology and materials science, both red and blue l...

    03-07
    Vedi traduzione
  • Laser Photonics, the "dark horse" of laser cleaning, plans to build a new factory of nearly 50000 square meters in North America

    On July 2nd local time, Laser Photonics, the dark horse of laser cleaning, announced a major expansion plan: to build a modern new factory covering an area of 50000 square feet (approximately 4645.152 square meters) in Lake Mary, Florida, USA.This expansion marks a firm manifestation of Laser Photonics' confidence in the sustained growth of the North American and even global markets, and also sig...

    2024-07-04
    Vedi traduzione