Italiano

Progress in the Study of Nonlinear Behavior of Platinum Selenide Induced by Strong Terahertz at Shanghai Optics and Machinery Institute

367
2024-05-23 14:28:07
Vedi traduzione

Recently, the research team of the State Key Laboratory of Intense Field Laser Physics of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research on the nonlinear behavior and mechanism of platinum selenide in terahertz band. The research team systematically studied the spectral and optical intensity characteristics of platinum selenide under strong terahertz pulse excitation, revealing two nonlinear processes dominated by the real and imaginary parts of nonlinear polarization. The related achievements were published in Optics Letters under the title "Terahertz triggered ultra fast non-linear optical activities in two dimensional centrosymmetric PtSe2".

Terahertz is an electromagnetic spectrum region between millimeter waves and infrared optics, and exploring potential materials for application in the terahertz band is crucial for the development of terahertz technology. The two-dimensional topological semi metallic platinum selenide exhibits excellent performance in terahertz generation and modulation due to its broadband photoresponse and photoelectric response characteristics. 
However, there is still a lack of systematic research on the basic nonlinear optical properties of platinum selenide under strong terahertz interaction. Therefore, exploring the nonlinear phenomena and underlying mechanisms of platinum selenide in the terahertz domain is of great significance.

In this study, the research team utilized ultrafast terahertz pumping infrared detection technology to investigate the interaction between terahertz pulses and platinum selenide thin films. The strong terahertz pulse breaks the inversion symmetry center of platinum selenide through nonlinear polarization and radiates a strong second harmonic signal using its nonlinear polarization real part effect. The time scale of the second harmonic signal is comparable to that of terahertz pulses, and it has a high signal-to-noise ratio and switching ratio, confirming that this property can be applied to terahertz modulation and logic gates. On the other hand, due to the effect of the imaginary part of nonlinear polarization, the conductivity of platinum selenide is modulated by strong terahertz, exhibiting a phenomenon of enhanced nonlinear absorption. This work reveals the nonlinear properties of platinum selenide in the terahertz region, achieving transient reversible inversion symmetry control of platinum selenide, and expanding the application potential of platinum selenide based two-dimensional materials in future optoelectronic devices and logic circuits.

The related work has received support from the National Natural Science Foundation of China and other organizations.

Figure 1 (a) Schematic diagram of terahertz pump infrared light detection system. (b) Waveform diagram of terahertz pump source. (c) Reflection spectra with and without terahertz pumping.

Figure 2 (a) Second harmonic spectrum of platinum selenide obtained under terahertz pumping infrared light detection system. (b) Comparison of the square of the terahertz waveform with the ultrafast dynamic process extracted at 725 nm. (c) The relationship between second harmonic signal strength and terahertz field strength. (d) Polarization properties of second harmonic signal intensity.

Figure 3 (a) The relationship between the transmittance of platinum selenide thin films and terahertz field strength. (b) The relationship between the conductivity of platinum selenide and terahertz field strength.

Source: Shanghai Institute of Optics and Precision Machinery

Raccomandazioni correlate
  • AEROTECH releases updated AUTOMATION1 motion control platform

    Aerotech is a global leader in precision motion control and automation, and every release has made the Automation1 motion control platform even stronger and more user-friendly. Version 2.5 brings TCP socket interface (test version), Automation1 MachineApps HMI development, new auxiliary module for motor settings, and improved machine settings for galvanometer laser scanning heads.Automation1 conti...

    2023-08-14
    Vedi traduzione
  • STREAMLIGHT Upgrade TLR RM Light with Red or Green Laser

    Streamlight, a leading supplier of high-performance lighting and weapon lights/laser aiming equipment, has launched upgraded models of its TLR RM 1 and TLR RM 2 series of lights, each now equipped with an HPL face cap, providing ultra bright beams of up to 1000 lumens and an extended range of up to 22000 candela.The popular TLR RM 1 and TLR RM 2 models are equipped with red or green lasers, both o...

    2024-02-23
    Vedi traduzione
  • China University of Science and Technology has made progress in the study of the regulatory mechanism of thermally induced delayed fluorescence

    Recently, Professor Zhou Meng's research group at the University of Science and Technology of China collaborated with Professor Fu Hongbing's team at the Capital Normal University to reveal the mechanism by which aggregation effects regulate the luminescent properties of thermally delayed fluorescent materials. The research findings, titled "Aggregation Enhanced Thermally Activated Delayed Fluoros...

    2024-06-28
    Vedi traduzione
  • IPG Photonics announces 2024 financial loss of $162 million

    On February 11th, global industrial fiber laser giant IPG Photonics announced its financial performance for the fourth quarter and full year of 2024. Annual sales have fallen below the $1 billion mark for the first time, with a year-on-year decline of 24% and a pre tax loss of up to $162 million. As an industry leader, IPG's financial report not only reflects the deep adjustment faced by the ind...

    02-13
    Vedi traduzione
  • China University of Science and Technology has made significant progress in the field of pure red perovskite light-emitting diodes

    Recently, four research groups from the University of Science and Technology of China, namely Yao Hongbin, Fan Fengjia, Lin Yue, and Hu Wei, have collaborated to make significant progress in the field of pure red perovskite light-emitting diodes (LEDs). The team independently invented the Electrical Excitation Transient Spectroscopy (EETA) technology and used it to reveal that hole leakage is the ...

    05-12
    Vedi traduzione