Italiano

Accurate measurement of neptunium ionization potential using new laser technology

334
2024-05-11 16:42:14
Vedi traduzione

Neptunium is the main radioactive component of nuclear waste, with a complex atomic structure that can be explored through mass spectrometry. This analysis is crucial for understanding its inherent characteristics and determining the isotopic composition of neptunium waste. Magdalena Kaja and her team from Johannes Gutenberg University in Mainz, Germany have developed a novel laser spectroscopy technique that can more accurately measure the ionization potential of neptunium compared to previous methods.

Neptunium is an actinide metal in the periodic table adjacent to uranium, with an atomic number of 93. The inspiration for its name comes from Neptune, located outside of Uranus in the solar system, which is a recognition of its position. Among the 25 known isotopes, most have extremely short lifetimes. However, the most stable isotope, neptunium 237 (237 Np), has a half-life of over 2 million years, making it a particularly dangerous nuclear pollutant.

The neptunium isotope samples available for this type of analysis are very small: they typically only contain a few atoms of the isotope.


Magdalena Kaja and her colleagues utilized a cutting-edge device that includes solid-state titanium: sapphire laser systems, enhanced laser ion sources, and high transmittance mass separators. This advanced equipment has played an important role in their research on neptunium.

The research team used this technique to measure the first ionization energy of neptunium, which is the energy required to remove the first electron from the outermost electron shell to form a positive ion. They accurately determined the value to be 6.265608 (19) eV. This measurement is not only consistent with the values previously reported in scientific literature, but also achieves an accuracy level more than ten times higher than any previous measurement.

This method can also be applied to the analysis and detection of trace amounts of neptunium in radioactive waste.

Source: Laser Net

Raccomandazioni correlate
  • An innovative technology that can make light "bend"

    A research team from the University of Glasgow in the UK drew inspiration from the phenomenon of clouds scattering sunlight and developed an innovative technology that can effectively guide or even "bend" light. This technology is expected to achieve significant breakthroughs in fields such as medical imaging, cooling systems, and even nuclear reactors. The relevant research results were published...

    2024-11-11
    Vedi traduzione
  • French research team successfully develops new orange laser

    A research team in France has reported a novel laser that emits light in the orange region of the spectrum, indicating its potential applications in flow cytometry and astronomical laser guidance.In the research results just published in Optics Express, the team (including researchers from the É cole Polytechnique in Caen, France and Oxxius, a laser manufacturer based in Lannion) claimed that the ...

    03-04
    Vedi traduzione
  • The Ruefeng 30w picosecond laser brings unprecedented possibilities in the art of cutting resin eye lenses

    Ruifeng Picosecond laser: Open the door to the art of cutting resin eye lensesAs an important innovation in the modern eyewear industry, resin lenses bring us visual clarity and comfort with their lightness, transparency and impact resistance.However, with the continuous improvement of people's demand for quality and personalization, how to achieve accurate and beautiful cutting on resin eye lense...

    2023-09-14
    Vedi traduzione
  • Laser Wire Solutions and HumanTek Jointly Enter the Korean Laser Wire Stripping Market

    Recently, Laser Wire Solutions officially welcomed its important distribution partner in South Korea - HumanTek. This cooperation marks the official establishment of HumanTek as a branch of Laser Wire Solutions in Korea, and both parties will work together to provide excellent services for the Korean laser wire stripping market.HumanTek, with its deep foundation in the Korean market and strong pro...

    2024-07-03
    Vedi traduzione
  • Scientists demonstrate a new optical neural network training method that can crush electronic microprocessors

    The current deep neural network system (such as ChatGPT) can quickly improve energy efficiency by 100 times in training, and "future improvements will greatly increase by several orders of magnitude. Scientists from MIT and other institutions have demonstrated a new optical neural network training method that can crush state-of-the-art electronic microprocessors.Moreover, the computational density...

    2023-09-27
    Vedi traduzione