Italiano

Researchers use blurry light to 3D print high-quality optical components

710
2024-05-11 16:32:03
Vedi traduzione

Canadian researchers have developed a new 3D printing method called Blur Tomography, which can quickly produce micro lenses with commercial grade optical quality. The new method can make designing and manufacturing various optical devices easier and faster.

Daniel Webber from the National Research Council of Canada stated, "We have intentionally added optical blurring to the beams used in this 3D printing method to manufacture precision optical components." "This enables the production of optically smooth surfaces."

In the highly influential research journal Optica of the Optica Publishing Group, these researchers demonstrated this new method for manufacturing millimeter level flat convex optical lenses with imaging performance similar to commercially available glass lenses. They also demonstrated that this method can produce usable optical components in just 30 minutes.

Webber stated, "Due to the economic viability of tomography 3D printers and the materials used, we expect this method to be highly valuable for economically efficient and fast prototyping of optical components." "In addition, the inherent free shape properties of tomography 3D printing allow optical designers to simplify designs by replacing multiple standard optical devices with printed optical devices with complex shapes."

Smooth edges
Fault volume additive manufacturing is a relatively new manufacturing method that uses projected light to cure photosensitive resins in specific areas. It allows the entire part to be printed at once without the need for any supporting structures. However, existing tomography methods cannot directly print lenses with imaging quality, as the pencil shaped beam used generates stripes, forming small ridges on the surface of the components. Although post-processing steps can be used to create smooth surfaces, these methods increase time and complexity, thereby eliminating the advantages of rapid prototyping related to fault printing.

"Due to the strict technical specifications required for functional lenses and the complex and time-consuming manufacturing process, the manufacturing cost of optical components is high," said Dr. Weber. "Fuzzy tomography can be used for low-cost free form design. As technology matures, it can quickly prototype new optical devices, which is useful for anyone from commercial manufacturers to garage inventors."

Create tiny lenses
To test the new method, researchers first created a simple planar convex lens and demonstrated that its imaging resolution can be comparable to commercial glass lenses with the same physical size. It also exhibits micrometer level shape errors, sub nanometer level surface roughness, and point spread functions close to glass lenses.

They also used fuzzy tomography technology to create a 3x3 microlens array and compared it with traditional tomography 3D printed arrays. They found that due to the high surface roughness, traditional printed arrays cannot be used to image business cards, but arrays printed by fuzzy tomography can be used. In addition, researchers also demonstrated the use of a spherical lens imprinted onto optical fibers, which previously could only be achieved using additive manufacturing technology called two-photon polymerization.

They are now committed to improving component accuracy by optimizing the optical patterning method and incorporating material parameters into the printing process. They also hope to introduce automation of printing time to make the system powerful enough for commercial use.
Webber stated, "Fault 3D printing is a rapidly maturing field with applications in many fields." "Here, we leverage the inherent advantages of this 3D printing method to manufacture millimeter level optical components. In this process, we have added a fast and low-cost alternative to optical manufacturing technology, which may have an impact on future technologies."

Source: Laser Net

Raccomandazioni correlate
  • Probe organization of photoacoustic devices using low-cost laser diodes

    Photoacoustic technology provides a non-invasive method for detecting biological tissues, but its clinical application is limited, partly due to the large volume and high cost of laser sources. A compact PA sensing instrument powered by laser diodes for biomedical tissue diagnosis can provide clinical doctors with a practical and effective tool for evaluating breast diseases.By providing a cost-ef...

    2024-03-06
    Vedi traduzione
  • TroGroup announces acquisition of Luxinar Ltd.

    Recently, TroGroup, a family owned laser giant operating globally in Austria, announced a major strategic move - the successful acquisition of Luxinar Ltd., a leading laser source manufacturer based in Hull, UK. This move marks a new level of TroGroup's technological leadership in the field of laser sources.Through this acquisition, Luxinar, with its approximately 200 elite team and over 25 years ...

    2024-08-03
    Vedi traduzione
  • Shanghai Optical and Mechanical Institute has made progress in ultra-low threshold Rydberg state single mode polariton lasers based on symmetric engineering

    Recently, the research team of Dong Hongxing and Zhang Long from the Research Center of Infrared Optical Materials of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Mechanics, in cooperation with Huazhong University of Science and Technology, reported a new mechanism for generating dynamically tunable single-mode lasers from exciton polaritons with ultra-low thresholds,...

    2023-10-12
    Vedi traduzione
  • Shanghai Institute of Optics and Fine Mechanics has made progress in synchronously pumped ultrafast Raman fiber lasers

    Recently, the research team led by Zhou Jiaqi from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the study of synchronously pumped ultrafast Raman fiber lasers. The related achievements were published in Optics Express under the title "Revealing influence of timing jitter on ultra fast...

    06-07
    Vedi traduzione
  • Marvel Fusion announces completion of € 50 million B+round funding

    On March 28th, Marvel Fusion, a laser fusion company from Munich, Germany, announced the completion of a B+round financing of 50 million euros, bringing the total amount of this round of financing to 113 million euros. It is reported that the company's cumulative financing has reached 385 million euros, making it the largest fusion company in Europe in terms of financing scale. This capital incr...

    03-31
    Vedi traduzione