Italiano

Wearable Breakthrough! A rubber like deformable energy storage device using laser precision manufacturing

391
2024-04-26 15:50:05
Vedi traduzione

Recently, foreign researchers have made remarkable breakthroughs in the field of flexible energy storage devices, successfully developing a small energy storage device that can stretch, twist, fold, and wrinkle freely. This significant achievement has been published in the journal npj Flexible Electronics.

With the booming development of wearable technology, the demand for energy storage solutions that can adapt to the flexibility and stretchability of soft electronic devices is becoming increasingly urgent. Micro supercapacitors (MSCs) have become a highly promising deformable energy storage material due to their high power density, fast charging, and long cycle life.

However, the brittleness of traditional electrode materials such as gold (Au) poses a significant challenge in manufacturing cross electrode modes that can maintain stable performance through repeated stretching and twisting. At the same time, although eutectic gallium indium liquid metal (EGaIn) has attracted attention for its high conductivity and excellent deformability, its extremely high surface tension makes fine patterning operations exceptionally difficult.

Faced with these challenges, the research team demonstrated extraordinary innovative spirit. They cleverly utilized laser technology to accurately depict the fine patterns of EGaIn and graphene (as active materials) on stretchable polystyrene block copolymer (SEBS) substrates.

During the laser ablation process, the underlying SEBS substrate is intact and undamaged, ensuring the flexibility and durability of MSC devices. Excitingly, the surface capacitance of this new MSC can still maintain its original value after undergoing up to 1000 stretching cycles. What is even more remarkable is that these prepared MSCs can maintain stable operation under various mechanical deformations, such as stretching, folding, twisting, and wrinkling.

The research team brought together several outstanding scientists, including Professor Jin Kon Kim and Dr. Keon Woo Kim from the Department of Chemical Engineering at POSTECH, as well as Dr. Yang Chanwoo and Researcher Seong Ju Park from the Korea Institute of Industrial Technology (KITECH). Their joint efforts and wisdom have injected new vitality into the development of flexible energy storage.

Professor Jin Kon Kim is confident in this achievement, stating, "The application of laser patterned liquid metal electrodes marks an important step in the development of truly deformable energy storage solutions. With the continuous advancement of wearable technology, such innovation will play a crucial role in ensuring that our devices can adapt to dynamic lifestyles. We look forward to this technology bringing more convenient and efficient energy storage experiences to future wearable devices."

Source: OFweek

Raccomandazioni correlate
  • Micro laser opens the door to chip size sensors

    The new device is a frequency comb - a special type of laser that can generate multiple wavelengths of light, each with a fixed frequency interval. On the spectrogram, it looks a bit like the teeth of a comb. In approximately a quarter century since their first development, these "cursor rulers" have completely transformed various high-precision measurements from timing to molecular detection. In ...

    2024-03-13
    Vedi traduzione
  • A new type of all-optical intelligent spectrometer

    Recently, Professor Xu Tingfa's research team from the School of Optoelectronics at Beijing Institute of Technology and Assistant Professor Lin Xing's team from Tsinghua University jointly developed a new type of Opto Intelligence Spectrometer (OIS). The device is based on diffractive neural network technology and achieves precise spectral reconstruction under spatially coherent or spatially incoh...

    2024-07-22
    Vedi traduzione
  • A New Method for Controlling Light Polarization Using Liquid Crystal to Create Holograms

    Researchers have made significant breakthroughs in controlling optical polarization, which is a key characteristic of various applications such as augmented reality, data storage, and encryption.This new method was developed by a group of scientists using liquid crystals to create holograms, which can manipulate the polarization of light at different points. This represents a significant advanceme...

    2024-03-12
    Vedi traduzione
  • Exail acquires optical company Leukos

    Recently, exail (formerly iXblue) announced the acquisition of Leukos, an optical company specializing in providing advanced laser sources for metrology, spectroscopy, and imaging applications.Leukos was founded by the French XLIM Institute (a joint research department of the French National Academy of Sciences and the University of Limoges), with over 20 years of professional experience in the re...

    01-13
    Vedi traduzione
  • Researchers have reinvented laser free magnetic control

    In a significant advancement in material physics, researchers from Germany and the United States have theoretically demonstrated that only extremely thin materials need to be α- RuCl3 can be placed in an optical cavity to control its magnetic state.This discovery may pave the way for new methods of controlling material properties without the use of strong lasers.The Role of Optical Vacuum W...

    2023-11-09
    Vedi traduzione