Italiano

Scientists have developed the most powerful ultraviolet laser using LBO crystals

344
2024-04-07 16:08:19
Vedi traduzione

It is reported that recently researchers from the Chinese Academy of Sciences have achieved the highest power output of 193 nm and 221 nm lasers using lithium borate (LBO) crystals. This achievement lays the foundation for the further application of the laser in deep ultraviolet (DUV) spectroscopy.
The laser in DUV spectroscopy has many applications in science and technology, such as defect detection, spectroscopy, lithography, and metrology. Traditionally, argon fluoride (ArF) lasers have been used to generate high-power 193nm lasers for applications such as lithography.
Other applications of DUV lasers include the production of microelectronic devices, semiconductor integrated circuits, and medical applications for ophthalmic surgeries. In these applications, it is commonly referred to as an excimer laser.

However, these lasers are not completely coherent and therefore cannot be used for more sensitive applications such as interferometric lithography, where fine features must be printed in the form of arrays. Such precise applications require more coherent lasers, which provides an opportunity for researchers to manufacture hybrid excimer lasers.

What is a hybrid excimer laser?
In order to achieve coherence requirements, scientists have been considering using solid-state seeds instead of gas (ArF) oscillators to make them hybrid lasers. In addition to improving coherence, this design also aims to increase the photon energy of the laser, so that it can even be used with carbon compounds with minimal thermal impact.

To achieve this goal, the linewidth of the 193nm seed laser needs to be maintained below 4 GHz. The statement states that this is the coherence length crucial for interference seen through the use of currently available solid-state laser technology.

What achievements have been made on DUV lasers?
Researchers from the Chinese Academy of Sciences have achieved the same linewidth as the 193 nm hybrid excimer laser by using LBO crystals. In their device, researchers used a complex two-stage and frequency generation process to achieve a laser output of 60 milliwatts (60 megawatts).
The device includes two lasers, one at 258 nanometers and the other at 1553 nanometers. These lasers come from ytterbium hybrid lasers and erbium-doped fiber lasers, ultimately forming 2mm x 2mm x 30mm Yb: YAG bulk crystals to provide the required laser output.

The resulting DUV laser pulse has a duration of 4.6 nanoseconds (ns), a repetition rate of 6 kHz, and a linewidth of approximately 640 MHz.
It is worth noting that the output power of the 193nm laser and its accompanying 221nm laser is 60mW, which is the highest power generated using LBO crystals.

The conversion efficiency of 221-193nm is 27%, and the conversion efficiency of 258-193nm is 3%, setting a new benchmark.
This study demonstrates the feasibility of using solid-state lasers to pump LBO, which can reliably and effectively generate 193nm narrow linewidth lasers, and opens up a new path for manufacturing cost-effective high-power DUV laser systems using LBO
Therefore, researchers believe that LBO crystals can be used to generate more DUV lasers, with output powers ranging from a few milliwatts to a few watts, opening up further avenues for these wavelengths.
This research result is published in the journal Advanced Photonic Nexus.

Source: OFweek

Raccomandazioni correlate
  • The new Casiris H6 4K UST tricolor laser projector is about to be launched through Indiegogo

    Casir is about to launch the H6 4K UST tricolor laser projector through Indiegogo. The new laser projector has a brightness of up to 3000 ANSI lumens and a BT.2020 color gamut coverage of 110%. It is an ultra short focus projector that runs on Android TV.The Casiris H6 4K UST tricolor laser projector is a brighter and more accurate version of the Casiris A6. It also has greater image projection ca...

    2023-09-18
    Vedi traduzione
  • Filatek: Leading the Development of Laser, Shining "Additive Prince"

    In recent years, the field of laser technology has received widespread attention from the outside world. At that time, the Munich Shanghai Electronic Production Equipment Exhibition was successfully held in Shanghai, and Suzhou Feilaitek Laser Technology Co., Ltd. (hereinafter referred to as "Feilaitek"), a leading enterprise in the field of industrial laser 3D dynamic focusing systems, appeared a...

    2024-04-12
    Vedi traduzione
  • Van's updates the manufacturer of laser-cut parts

    Van's Aircraft has responded to reports of ruptured dented parts found in AirVenture's latest kit. These defects are caused by external suppliers changing the process of laser cutting parts. From February 2022 to June 2023, Van's moved some parts from traditional punch manufacturing to an outside supplier that can laser cut rivet holes. The move is designed to increase the company's throughput and...

    2023-08-04
    Vedi traduzione
  • Aerosol jet printing can completely change the manufacturing of microfluidic devices

    Surface acoustic wave technology is renowned for its high precision and fast driving, which is crucial for microfluidics and affects a wide range of research fields. However, traditional manufacturing methods are time-consuming, complex, and require expensive cleanroom facilities.A new method overcomes these limitations by utilizing aerosol jet printing to create customized equipment with various ...

    2024-02-02
    Vedi traduzione
  • Scientists demonstrate effective fusion "spark plugs" in groundbreaking experiments

    Researchers from the Laser Energy Laboratory at the University of Rochester led the experiment and demonstrated an efficient "spark plug" for direct driving of inertial confinement fusion. In two studies published in the journal Nature Physics, the team shared their findings and detailed the potential to expand these methods with the aim of successful nuclear fusion in future facilities.LLE is the...

    2024-03-04
    Vedi traduzione